
International Journal of Recent Engineering Research and Development (IJRERD) 

ISSN: 2455-8761  

www.ijrerd.com || Volume 09 – Issue 04 || Jul - Aug 2024 || PP. 75-83 

75 | Page                                                                                                                          www.ijrerd.com 

 

On the Unique Metro Domination of Bicyclic Graphs 
 

Anup Victor D Souza 
 

Given a set of vertices },...,,,{= 321 kwwwwW  of a connected graph G , the metric representation of 

a vertex u  of G  with respect to W  is the vector  

)),(),...,,(),,((=)/( 21 uwduwduwdWu k  

where ),( uwd i ,  },{1,2, ki   denotes the shortest distance between u  and iw . The set W  is said 

to be a resolving set for G , if )/()/( WvWu  , for every WVvu , . The minimum cardinality of any 

resolving set for G  is the metric dimension of G . A dominating set which resolves a graph G  is called a 

metro dominating set. Further, if 1=|)(| WuN   for every vertex WVu  , then the metro dominating set 

W  of a graph G  is called a unique metro dominating set (in short an UMD-set).The minimum of the 

cardinalities of UMD-sets of G is called unique metro domination number of G denoted by )(G . In this 

paper, a class of Bicyclic graphs, are studied.  

 

1 Introduction 
In the Aerospace industry, navigation and routes needs to be planned in a optimized way so that it is cost 

effective. One of the ways to reduce costs is optimizing fuel burn. For an airline, this needs to be planned based 

on the number of available aircraft at a particular location/hanger, availability of pilots, distance to fuelling 

airports and so on. In order to achieve this optimization, take of location (Node or set of nodes) based on the 

various input parameters is advantageous. Small resolving sets can also provide an elegant solution to source 

localization[1].  

Let G  be a connected graph with the vertex set )(GV . The distance ),( wud  between two vertices 

)(, GVwu   is the length of a shortest path between them. For a vertex )(GVw , )(wN  denotes the set 

of all vertices adjacent to w  and is called open neighborhood of w . Similarly, the closed neighborhood of w  

is defined as }{)(=][ wwNwN  . Given an ordered set of vertices },,,{= 21 kwwwW   of a graph G , 

the metric representation of a vertex u  in G  with respect to W  is the k-vector denoted by 

)),(),...,(),,((=)/( 21 uwduwduwdWu k . The set W  is called a resolving set of G  if 

)/()/( WvWu   for every WVvu , , or equivalently, if every vertex of G  is uniquely identified by 

its distances from the vertices of W . A resolving set of minimum cardinality is called a metric basis and its 

cardinality is the metric dimension of G [2]. If ),,,,(=)/( 321 kddddWu  , then kdddd ,,,, 321   are 

called components of the code of u  generated by W  and in particular kidi ,1 , is called 
thi -component 

of the code of u  generated by W . A dominating set D  of a graph ),( EVG  is the subset of )(GV  having 

the property that for each vertex DGVu  )( , there exists a vertex Dw  such that uw  is in 

)(GE [3],[4].   

 

2 Definitions 

Definition 2.1 Let },,,{= 21 kuuu D  be an ordered dominating set of G  and let w  be a vertex of 

G . The representation )/( Dw  of w  with respect to D  is the k-tuple 

)),((,),,((),,((( 21 kuwduwduwd  . If distinct vertices of G  have distinct co-ordinates or representation 

with respect to D , then D  is called a metro dominating set of G  or simply an MD-set. A dominating set D  is 

called minimal if none of its proper subsets is a dominating set. The minimum of cardinalities of minimal MD 

sets of G is called the lower metro domination number or simply the metro domination number of G , denoted 

by )(G [7].  
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Definition 2.2 A metro dominating set D  of a graph ),( EVG  is a unique metro dominating set (in 

short an UMD set) if,  

1|=)(| DuN  

for each vertex D )(GVu . The minimum of cardinalities of minimal unique metro dominating sets of G  

is called unique metro domination number denoted by )(G [6],[10].  

 

3 Bicyclic Graphs 

Consider three paths aP , bP  and cP  where ncba = . Join the end vertices of bP  to the end 

vertices of aP  and cP . This is called a bicyclic graph denoted by 
cbaC ,,

. The vertices of aP  are denoted by 

aiv i ,11, , the vertices of bP  are denoted by biv i ,12,  and the vertices of cP  are denoted by 

civ i ,13, . The graph of n vertices obtained is in fig 1 

 

Figure  1: 
cbaC ,,

 

   

Let D be a subset of the vertex set of G. Let Dvu ,  be such that vwwwu j  21  is the 

shortest path between u and v. If none of jiwi ,1  are in D, i.e., vu,  are the only vertices of D in this 

path, then u and v are neighboring vertices of D and jwww  21  is called a gap between u and v. 

Further j is called order or length of the graph [8],[9].  

 In a cycle or path the gaps of D are of length 0,1 or 2, where D is a dominating set. A vertex of D can 

dominate atmost 2 vertices. Hence we get 
3

||
|||)||(|

2

1
||

V
DDVD  . This leads to,  

Lemma 3.1 If D is a dominating set then 
3

||
n

D  .  

 In the bicyclic graph 
cbaC ,,

, if the vertex 2,1v  and bv2,  are in D and all other vertices of D form gaps of 

order 2, then 
3

2||
|=|2||=||63|||=|2)|2(|




V
DVDDVD . This leads to  

Lemma 3.2 If Dvv b 2,2,1,  and all other vertices of D  form gaps of order 2 then 

3

2
=

3

2||
|=|

 nV
D   

 It is observed that },,{=)( 3,12,21,12,1 vvvvN  and },,{=)( 3,1)(2,1,2, cbab vvvvN  . If 2,1v  and bv2,  are 

in D, then aP , will have 2a  vertices to be dominated. Similarly cP  will have c-2 vertices and bP  will have 

b-4 vertices to be dominated. If all gaps of D are of order 2, then 3) 0(2 moda  , 3) 0(4 modb   and 

3) 0(2 modc  . Further  

.
3

2
=2

3

2

3

4

3

2
|=|










 ncba
D  
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This leads to  

Lemma 3.3  If 3) 2(moda  , 3) 1(modb  , 3) 2(modc   and Dvv b 2,2,1,  then 

3

2
=)( ,, n

C cba .  

 In all other cases, 
3

2
>)( ,, n

C cba . In all such cases there will be gaps of order 1 or 0.  

Observation 3.4   

1. If 3) 0(modn  , then 
3

=)(
n

Pn , 
3

=)(
n

Cn  and all gaps of D are of order 2.  

2. If 3) 1(modn  , then 
3

2
=)(

n
Pn , 

3

2
=)(

n
Cn  and there will be atleast one gap of order 0 

or, 1 or more gaps of order1.  

3. If 3) 2(modn  , then 
3

1
=)(

n
Pn  and 

3

1
=)(

n
Cn   

4. In nP  or nC , suppose 1, ii vv  and 4iv  are in D forming a gap of order 0 and another gap of order 2. By 

deleting 1iv  from D and adding 2iv  to D we get two gaps of order 1  

5. In 
cbaC ,,

, we find three cycles, baca CC  ,2  and cbC  . The cycle 2caC  contains all vertices of aP  

and cP  and also 2,1v  and bv2, . The cycle baC   contains all vertices of aP  and bP . Similarly cbC   

contains all vertices of bP  and cP .  

6. The vertex in a gap of order 1, is not dominated uniquely. Hence as far as possible we avoid gaps of 

order 1.  

  

 Suppose 3) 0(3), 0( modbmoda   and 3) 0(modc  . The cycle 2caC  contians 2,1v  and 

bv2, . We take 2,1v  in D. As 2,2v  is dominated by 2,1v  and 22,  cab Cv , we are left with 3b  vertices 

12,2,42,3, bvvv   of bP . As 3) 0(3 modb  , we have to include 
3

3b
 vertices of bP  into D. They are 

2)(2,2,102,72,4 ,,,, bvvvv  . Similarly keeping gaps of order 2, we include avvv 1,1.61,3 ,,,   and 

cvvv 3,3,63,3 ,,,   in D. This leaves a gap of order 1 between av1,  and cv3, . Further,  

3) 2(2 modca   

and hence  

3
=

3

3

3

12)(
|=|

nbca
D





 

Thus leading to  

Lemma 3.5  If 3) 0(3), 0( modbmoda   and 3) 0(modc   then .
3

=)( ,, n
C cba   

 Take 3) (3), ( modbbmodaa ii   and 3) (modcc i  where 2,,0  iii cba . Then there are 

27 cases two of which are given by Lemma 3.3,3.5. Keeping ib  fixed, if the values of ia  and ic  are 

interchanged, the number of vertices in 2caC  remains without change. Hence || D  remains the same. For a 

fixed ib , the case with ,1)(0,),,( iiii bcba   is same as the case with ,0)(1,),,( iiii bcba  . As ib  varies, 

there are 6 cases of which 3 cases with 0=1,= cai  and 3 cases with 1=0,= ii ca . Similarly when 1=ia  

and 2=ic  there are 6 cases and when 0=ia  and 2=ic  there are 6 cases. These 18 cases will have only 9 

distinct cases. Hence out of 27 cases 9 cases are dropped. Only 18 distinct cases are for discussion. 
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Taking 2,1v , in D, it is seen that Dv 2,4  and 1,2,= ,1,3 kv k  are in D. If 1)(1, av  and av1,  are not in 

D, then Dv b 2, . This will imply that 23= ka . Similarly if 23= jc  then .2, Dv b   Thus leading to  

 

Lemma 3.6 If Dv 2,1  and 3) ( 2 moda   or 3) ( 2 modc  , then Dv b 2,   

 
Figure  2:  

   

When 3) 0(moda  , 3) 0(modb   and 3) 2(modc  , 3) 1(2 modca  . Further 2,1v  and 

bv2,  are in D implies that only 4b  vertices of bP  are to be dominated and 3) 2(4 modb  . Hence  

 .
3

1
=

3

14

3

22)(
|=|




 nbca
D  

 
[b]                                         Modified MD Set D 

Figure  3: 

 

However there is a gap of order 1 (refer figure 2) between 2)(2, bv  and bv2,  which can be removed from 

D. 

If 1)(3, cv  is included in D  and bv2,  is removed then the gap of order 1 is removed from D and there 

will be a gap of order 0 between 2)(3, cv  and 1)(3, cv  figure 3. Further, || D  is unaltered. This leads to  

Lemma 3.7 If 3) 0(moda  , 3) 0(modb   and 3) 2(modc  , then 
3

1
=)( ,, n

C cba   

 Now take 2=1,= ii ba  and 2=ic . Vertex Dv 2,1  implies that vertex Dv b 2, . Also 

3)2(2 modca  . Further D  contains ,,, 2,72,4 vv  .It contain 1)(2, bv  which forms a gap of order 0 

between 1)(2, bv  and bv2, . This gap of 0 forces to include bv2,  in bP  (for the purpose of calculation of || D ) 

(There are 2b  vertices in bP  other than 2,1v  and bv2, . Hence  

3

1
=

3

2

3

12
|=|




 nbca
D  

The gap of order 1 between 1)(1, av  and bv2,  figure 4 can be removed without changing || D . If 1)(3, cv  

is included in D and bv2,  is removed from D figure 5 then there is a gap of order 0 between 2)(3, cv  and 

1)(3, cv . 
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Figure  4:  

    
 [width=9 cm]fig3bm  

   

Then no gaps of order 1 will be there. Further || D  remains the same. This leads to  

Lemma 3.8 If 3) ( 23), ( 1 modbmoda   and 3) ( 2 modc  , then 
3

1
=)( ,, n

C cba . 

 

When 2,1v  and bv2,  are in D, there will be 4b  vertices of bP  left to be dominated. If 3) 2(moda   

and 3), 2(modc   but 3) 1(modb   then Dvvv ,,, 2,72,42,1  . Hence Dv b 2, . 

 
Modified MD Set D 

Figure  5:  

 

 Take the case when 3) 1(modb  , 3) 2(moda   and 3) 2(modc  , say (0,1,1)),,( iii cba . 

Then 3) 0(2 modca  . Now 3) 1(modb   will imply 
3

2b
 vertices, Dvvv b 2,2,42,1 ,,,  . 

Further as 3) 0(2 modba  , there are 
3

2 ca
 vertices of 2caC  in D. However 2,1v  is counted 

twice, in bP  and again in .2caC  Therefore there are 
3

1
=1

3

2

3

2 





 nbca
 vertices in D. We 

observe that bv2,  is dominated by av2, . But bv2,  is required in D to dominate 1)(2, bv . Alternately we can have 

Dv b 1)(2,  instead of bv2, . In any case, we have  

Lemma 3.9 If 3)  1(3),  0( modbmoda   and 3),  1(modc   then 
3

1
=)( ,, n

C cba   

 Suppose 3) 0(moda  , 3) 1(modb   and 3) 0(modc  . Vertex Dv b 2, . As already observed 

1)(2, bv  can be in D instead of bv2, . Then 3)2(2 modca   implies that 2caC  will have a gap of order 

1. The gap of order 1, may be inserted anywhere. In figure 6 , we have the gap of order 0 between av1,  and bv2,  
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Figure  6:  

   
Thus we have  

3

2
=

3

12)(

3

12)(
|=|




 nbca
D  

This leads to  

Lemma 3.10 If 3) 1(3), 0( modbmoda   and 3) 0(modc  , then 
3

2
=)( ,, n

C cba .  

 Take the case when 3) 2(3), 0( modbmoda   and 3) 2(modc  . As 3), 1(2 modca   

there is a gap of order 0 in 
2caC . Further 3) 2(3 modb  . Therefore 

3

2
=

3

13)(

3

22)(
|=|




 nbca
D . Gap of order 0 may be converted into 2 gaps of order 1, as seen 

in figure 7 

 
(A)                                                                             (B) 

Figure  7:  

  
This will lead to the following lemma.  

Lemma 3.11 If 3) 2(3), 0( modbmoda   and 3) 2(modc  , then 
3

2
=)( ,, n

C cba .  

 When 3) 2(moda  , 3) 2(modb   and 3) 0(modc  , then 2,1v  and bv2,  are in D. As 

)( 2,12,1 vNv   and )( 2,1)(2, bb vNv  , remain 4b  vertices of bP . Here 3) 1(2 modba   and 

3) 1(4 modb  . Vertices in 4bP  are 2)(2,2,52,42,3 ,,,, bvvvv  : The vertex Dv b 4)(2, , hence 

,2)(2, Dv b   creating 2 gaps of order 1. Alternately we may include 1)(2, bv  in D instead of ,2)(2, bv  leaving 

one gap of order 0. Therefore .
3

2
=

3

24)(

3

2)(
|=|




 nbcba
D  This will give us  

Lemma 3.12 If 3) 2(3), 2( modbmoda   and 
3

2
=)(3), 0( ,, 


n

Cmodc cba   

Going through the remaining cases, we get,  

Theorem 3.13 The domination number of 
cbaC ,,

 is given by  



International Journal of Recent Engineering Research and Development (IJRERD) 

ISSN: 2455-8761  

www.ijrerd.com || Volume 09 – Issue 04 || Jul - Aug 2024 || PP. 75-83 

81 | Page                                                                                                                          www.ijrerd.com 


































2 other thanorder  of gaps has  and  3)  2(if,
3

1

2order  of are gaps all if  3)  2(if,
3

2

0order  of gaps no has  and  3)  1(if,
3

1

0order  of gaps 2 has  and  3)  1(if,
3

2

3)  0(if,
3

=)( ,,

Dmodcba
n

modcba
n

Dmodcba
n

Dmodcba
n

modcba
n

C cba  

Suppose there is a gap of order 1 between 4v  and 6v  as in figure 8. 

 

},{=)( 645 uuuN  and },,,,{= 9641 uuuuD . Then 2|=(| 5 DuN   and hence 5u  is not 

uniquely dominated. In such a case we include 5u  into D . Then D  is a UMD set as in figure 9. 

 
Figure 8 

 

 
Figure 9 

 

When 3)  0(moda  , 3)  2(modb   and 3)2(modc  , then D  will have 2 gaps of order 0. In 

figure 12, 11=6,= ba  and 8=c . In this case there is a gap of order 0 between 1,6v  and 2,11v . There is 

another gap of order 0 between 2,10v  and 2,11v . 

 

 
Figure  10: UMD set for 

6,11,8C   

   

In this case },,,,,,,,{= 2,102,72,43,33,62,111,61,32,1 vvvvvvvvvD , an ordered set. Here 25=n  and 
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9=
3

2
|=|

n
D . Further D is a UMD set. Vectors assigned to different vertices of 

6,11,8C  are all distinct. 

Hence 9=)( 6,11,8

2C . 

If a gap is of order 0 or 2 , then the domination is unique domination. If the gap is of order 1, then 

domination is not unique.  

In the discussion immediately after Lemma 3.5, we defined ii ba ,  and ic . We now take up the 18 cases 

based on the triplet ),,( iii cba    

 

• Case 1. All gaps are of order 2  

In this case the triplets involved are (0,0,1),(2,1,2) and (1,2,1) as seen in figure 11. 

 

 
 

 
 

 
Figure  11:   

   

In all these cases )(=)( ,,,, cbacba CC   

 
• Case 2. No gaps of order 1 but there are gaps of order 0.  

 In this case the triplets are (0,0,2),(0,1,0),(0,1,1),(0,1,2),(1,1,1),(0,2,2) and (2,2,2). For all these cases the 

metro dominating set D is also a unique metro dominating set and hence )(=)( ,,,, cbacba CC  .  

• Case 3: The MD set having gaps of order 1, but the adjacent vertices of D with respect to that gap are changed 

to get a new MD set, as shown in fig 2,3,4, 5. The new MD set D is not having any gap of order 1 . Triplets 

involved in the cases are (0,0,2) and (1,2,2).  
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In the above two cases cardinality of the MD set remains same. The modified MD set D has a gap of 

order 0. Therefore it is a UMD set and hence )(=)( ,,,, cbacba CC   .  

 
Figure  12:   

    

• Case 4: Metro Dominating set has a gap of order 1. Triplets ),,( iii cba  involved are (0,0,0),(1,0,2),(2,0,2), 

(1,1,2),(0,2,0),(0,2,1) and (1,1,1). Two of these (1,0,2) and (1,1,1) have 2 gaps of order 1 which can be modified 

to a single gap of order 1 as seen in fig. Therefore in all these cases, one vertex is added to the MD set to make it 

a UMD set. Thus if D is the MD set then we have 

 

Theorem 3.14  





 1order  of gaps has D where1,)(

1order  of gaps no has D where),(
=)(

,,

,,

,,

cba

cba

cba

C

C
C




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