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Abstract: This study was undertaken to establish the effect of the vaccination drive against COVID-19 on the 

herd immunity of Kenyan citizens. 

Two mathematical tools key in this area were used to determine Basic Reproduction Number (R0) which 

in turn was used to establish herd immunity. The two are the compartmental basic model: Susceptible, Infected, 

and Removed (SIR) model and the Next Generation Matrix (NGM). The necessary parameters required to 

calculate the R0 were computed in Python Software using the Ordinary Least Squares (OLS) technique using 

the data obtained from the Ministry of Health, Kenya. 

Lastly, Stability analysis was carried out on the SIR model with and without vaccination. The Lyapunov 

function was used in determining the global stability of the SIR model. The results from the calculations have 

depicted a significant drop in the value of R0 for a period after the vaccination campaigns began as compared to 

the period before the vaccination process. This points towards an increased herd immunity to a level way above 

the Herd immunity Threshold. The results from this work will be useful to the government (both at local and 

national levels) in planning vaccination plans to protect the population against COVID-19 as well as other 

possible emerging epidemics in the future. The study will also be relevant and useful in future research in the 

epidemiological field. 
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1. Introduction 
1.1 Essentials of Herd Immunity. 

The term herd immunity was first used by Topley and Wilson [1] in 1923. It has since helped to serve as 

the bedrock for vaccines and their applications, vaccination programs, cost analysis, and eradication of diseases 

such as smallpox. 

Acquired immunity is developed at the individual level either through immunization with a vaccine or 

via natural infection with a pathogen[2]. Herd immunity stems from the effects of individual immunity to that of 

the entire population of a particular region. As such as long as a sizable percentage of a population has been 

vaccinated, immunity is rolled out to the entire population, even those who have not been vaccinated. This 

population-level effect aims to establish a population immunity so that individuals who cannot be vaccinated 

such as the young and immune compromised are still protected against the disease. 

The herd immunity threshold depends on a single parameter known as the Basic Reproduction number, 

R0. The R0 refers to the average number of secondary infections caused by a single infectious individual 

introduced into a completely susceptible population. 

If a pathogen with an R0 of 3 is considered for example, it means on average, one infected person is 

capable of infecting three others on average during the infectious period. 

 

Mathematically, the Herd Immunity Threshold is defined by: 
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The basic reproduction number, R0, is a necessary parameter when dealing with an epidemic under 

control with vaccination [3]. One of the ways to reduce the reproduction rate of a disease is to reduce the 

number of susceptible in a population. Vaccination is the best way of achieving this. For example, it was 

successful in eradicating smallpox in the world in 1979[9]. Similarly, substantial progress has been made 

through vaccination to reduce and eventually eliminate polio in the world. In 1988, polio paralyzed an estimated 

350,000 individuals per year in more than 125 countries. However, by 2019, 125 cases caused by wild 

poliovirus were reported globally[4] . 

Mass vaccination is the cheapest and most effective means to control infectious diseases. Vaccination not 

only provides immunity to the individual but also provides it for the com-munity at large since it keeps the 

effective reproductive rate below the level that would allow the epidemic to grow. This is the basis for herd 

immunity. 

Not all vaccinations provide herd immunity e.g. vaccinations against tetanus.[1] 

 

1.2 Epidemiology 

Epidemiological modeling of infectious disease transmission has had an increasing influence on the 

theory and practice of disease management and control. Mathematical modeling of the spread of infectious 

diseases has become part of epidemiology policy decision-making in many countries. Epidemiology is the study 

of the distribution and determinants of disease prevalence in humans [7]. 
 

In mathematical modeling, two techniques are often used: 
 

1. Deterministic Model: 

These models ignore random variation, and so always predict the same outcome from a given starting 

point. Deterministic models allow one to calculate a future event exactly without the involvement of 

randomness. An epidemiological model is not reality; it is an extreme simplification of reality. An example is a 

model using an equation such as: 

y = x
2 

(1.2.1) 

2. Stochastic Model: 

These are more statistical and so may predict the distribution of possible outcomes. They can handle 

uncertainties in the inputs applied. They possess some inherent randomness in that the same set of parameter 

values and initial conditions will lead to sets of different outputs. Example: Finance (stock markets), 

earthquakes (variation in displacement and amplitude). 

 

1.2.1 Purposes of epidemiological Modelling 

1. Modeling provides concepts such as a threshold, reproduction number, etc. 

2. Models with appropriate complexity can be constructed to answer specific questions. 

3. Modeling can be used to estimate key parameters by fitting data. 

4. Models provide structures for organizing, coalescing, and cross-checking diverse pieces of information. 

5. Models can be used to assess the sensitivity of results to changes in parameter val-ues. 

6. Modeling can suggest crucial data that needs to be collected. 

7. Modeling can contribute to the design and analysis of epidemiological surveys. 

8. Identifying the causes and risk factors of the disease spread. 

 

1.2.2 Limitations of epidemiological Models 

1. An epidemiological model is not reality; it is an extreme simplification of reality. 

2. Deterministic models do not reflect the role of chance in disease spread and do not provide confidence 

intervals on results. 

3. Stochastic models incorporate chance but are usually harder to analyze than the corresponding 

deterministic model. 

 

By epidemiological model we refer to dynamic, deterministic modeling where the population is divided 

into compartments based on their epidemiological status such as susceptible, infectious, and recovered). The 

movement between compartments is specified using differential or difference equations. 

Mathematical models have become important tools in analyzing the spread and control of infectious 

diseases. The model formulation process clarifies assumptions, variables, and parameters; moreover, models 

provide conceptual results such as thresholds, basic reproduction numbers, contact numbers, and replacement 

numbers. 
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Comparisons can lead to a better understanding of the processes of disease spread. Modeling can often be 

used to compare different diseases in the same population, the same disease in different populations, or the same 

disease at different times. Epidemiological models are useful in comparing the effects of prevention or control 

procedures. [8] 

A lot has been published about the COVID-19 pandemic ever since its discovery in the Wuhan province 

of China. Being an infectious disease with a rampant spread among people due to close interaction, researchers 

in the Mathematics field have used various techniques available in the field to curb its spread. Such techniques 

include: SIR, SEIR, etc. 
 

1.3 COVID-19 Background 

Coronaviruses (CoVs) are a family of viruses that cause respiratory and intestinal illnesses in humans 

and animals. There are seven Human Coronaviruses that have been identified to date. Four of them are common, 

less high risk, and cause only mild respiratory illnesses in healthy humans. They include: HKU1, HCoV-OC43, 

HCoV-229E and HCoV-NL63. The other three are known to cause more severe illnesses in humans. These 

include: 

1. Middle East Respiratory Syndrome (MERS-CoV) 

2. Severe Acute Respiratory Syndrome (SARS-CoV) 

3. Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) [5] 
 

The disease caused by SARS-CoV-2 was named COVID-19 by the World Health Organization. This 

virus was first identified in the Wuhan province of China in December 2019[6]. The Virus is known to transmit 

from human to human through body fluids. Patients with COVID-19 exhibit clinical symptoms that appear in 

the form of no symptoms at all (patients being asymptomatic) to having: fever, cough, sore throat, general weak-

ness, fatigue, muscular pains, etc. [4]. 

 

The first case of COVID-19 was confirmed in Kenya on 12th March 2020 in Nairobi city. 
 

Ever since the virus has spread over the country so far with 323, 921 confirmed cases, out of which 5, 

649 succumbed to COVID-19 while 318, 097 recovered from the virus [21]. As a country, the government of 

Kenya tried its best to vaccinate its population against COVID-19. Kenya received 17,871,145 [21] doses of 

vaccines. Assuming each individual was to get two doses, it implies that in a population of 55, 944, 116 [39], 

approximately 16% percent were vaccinated. Among all the forty-seven counties in Kenya, Nairobi City 

County was the worst hit by the virus, with reported 129,123 cases as of 31st March 2022 [37]. 

The government of Kenya implemented severe measures to curb the spread of the disease including a 

lockdown of the city, social distance observance in public places, wearing of face masks as well and hygiene 

measures (washing of hands and sanitization practices). The implementation of these measures was 

implemented to the letter in Nairobi more than in any other place in Kenya. 

According to research conducted in 2020, approximately 80% of those who have a mild case of COVID-

19, close to the common cold, recover without needing any special treatment. This largely depends on the 

strength of the immune system of the particular individual. Still, as per the World Health Organization (WHO), 

one in every six people who get infected becomes seriously ill. The elderly and people with underlying medical 

conditions such as high blood pressure, heart problems, diabetes, etc. are at greater risk of serious illness from 

COVID-19. This is because to such individuals vaccinations will do much more harm than good.[6]. 

 

Despite the acquisition of COVID-19 vaccines by the government, few Kenyans responded to the 

government’s appeal to get vaccinated. Below are some of the reasons that led to low vaccination drive turnout: 

1. Some believed the drugs had been developed in haste. 

2. Lack of trust in the vaccines. Those infected could get reinfected. 

3. Religious reasons: some denominations don’t believe in modern medication. 

4. Fear: some saw how others reacted after being vaccinated and kept off themselves. 

 

2. Literature Review 
In 1985, Anderson and May [9], in their study on herd immunity pointed out that the point at which the 

proportion of susceptible people falls below the threshold needed for transmission is known as the Herd 

Immunity Threshold (HIT). Above this level, herd immunity begins to take effect and susceptible individuals 

benefit from the indirect protection from infection. 

In 2014, Ochoche and Gweryina [12], in their research on vaccination against measles in Nigeria, 

concluded that not all susceptibles in a population need to be vaccinated against a disease before the disease can 

be eliminated. There is a threshold level above which an infectious disease will cease to persist. When this level 
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is exceeded by vaccination as well as natural immunity the disease can be eliminated without necessarily 

vaccinating the entire population. This concept is known as herd immunity. 

 

In 2020, Haley E. R. et al. [2], proposed two ways of establishing herd immunity against Covid-19: 

1. Mass vaccination campaign, which requires the development of an effective and safe vaccine. 

2. Natural immunization of global population over time. However, the consequences of the latter are 

serious and far-reaching since a large population of humans would need to become infected with the 

virus, out of whom millions may succumb to it. 

 

They thus concluded that in the absence of vaccines, establishing herd immunity should not be the 

ultimate goal. Instead, an emphasis should be placed on policies that would safeguard the vulnerable in the 

population in the hope that herd immunity would be achieved as a byproduct of such measures, although not a 

primary objective itself. 

In 2020, Martin Nyamu et al. [13] in their work on modeling COVID-19 in Kenya obtained a basic 

reproduction number of 1.2 from the data available on the Kenyan population. This implied that about 16.67% 

of the Kenyan population needed to be vaccinated to stop the spread of the virus and achieve the desired herd 

immunity. 

In 2020, Imam A. F. et al. [14], in their paper, concluded that applying the concept of herd immunity to 

the Indonesians would be controversial because till then no vaccine had been found. 

In 2020, Robinson J. et al. [15] Analyzed the situation in a couple of countries regarding the situation of 

COVID-19 and the effects it had on their economies. In the study, they used Sweden as an example of an 

economy that relied heavily on herd immunity for survival. It never underwent any lockdown during the entire 

period of COVID-19. 

In 2021, Randy et al. [16], in their study on the effect of vaccination on COVID-19 progression and herd 

immunity in the Philippines concluded that herd immunity could be achieved faster using vaccination as 

opposed to naturally induced herd immunity. They did a comparison of the various available vaccines in the 

Philippines to determine which was the most effective; Pfizer-BioNTech is the best vaccine for decreasing the 

number of susceptible infections while increasing the number of fully immune individuals. It is fol-lowed 

closely by Moderna and Sputnik. 

In 2021, Hoque et al. [17], in their study on the progression of COVID-19 in Bangladesh came to the 

conclusion that to achieve herd immunity in the said country, 31% of the total population has to be vaccinated. 

In 2021, Chowdhary S. et al. [18], in their work on universality and herd immunity threshold through a 

study over several countries concluded that the COVID-19 epidemic will start decreasing when Herd immunity 

exceeds the Herd Immunity Threshold, which means the herd immunity has greater value than the herd 

immunity threshold. They hence proposed two different ways of disease reduction: 
 

1. By increasing herd immunity of the population over the herd immunity threshold. or 

2. By decreasing the herd immunity threshold below the herd immunity of the population. 

 

In 2021, Soni M. et al. [19], in their paper on the basic reproduction number and herd immunity for 

COVID-19 in India using data from March 2020 to January 2021 established that the R0 ranged from 1. 2561 to 

3 translating to a herd immunity ranging from 20% to 66%. They arrived at a mean value of 2.0546 for the basic 

reproduction number translating to 51% herd immunity In 2021, Garcia D. et al. [20], in their study of herd 

immunity in the Spanish population considered different combinations of elements that R0 depends on such as 

the virus itself, characteristics of the populations and their environment. Further, they established that R0 still 

depends on the methodology used, the accuracy of the data, and the generation time distribution. Estimates of R0 

for the population of Spain were established to range from 1.39 to 3.10. With these values, the herd immunity 

threshold ranges from 28.1% to 67.7% which makes 70% a realistic upper bound for Spain. 

 

2.1 Statement of the Problem 
A lot has been written on infectious diseases especially recently when the COVID-19 pandemic hit the 

world. Studies on enhancing herd immunity for epidemiological diseases such as smallpox, Influenza, and 

measles have been carried out extensively. However, little has been done on COVID-19’s herd immunity, 

especially in developing sub-Saharan African countries in the said period. This study builds on existing work 

but with a focus on Kenya, to establish that the infection levels within the country could have gone down due to 

herd immunity developed by the population after a substantial number of people were vaccinated. The herd 

immunity could have well been acquired naturally by the populace who may have acquired the pathogens and 

recovered on their own without seeking medical attention. This can be attributed to the COVID-19’s Delta 
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variant which was very dominant in late July 2021[21]. Acquisition of this led the majority of individuals to 

develop natural immunity against COVID-19 which contributed to herd immunity in the country. 

 

2.2 Objective of the Study 

2.2.1 Main Objective: 

To establish the relationship between vaccination and herd immunity of the Kenyan population during 

the COVID-19 pandemic period. 

 

2.2.2 Specific objectives: 

1. To determine the Basic Reproduction Numbers (R0) before and after COVID-19 vaccination exercise. 

2. To use the calculated R0 numbers above to establish the trend in Herd Immunity. 

3. To carry out the stability analysis to determine the behaviour of the SIR model with and without 

vaccination. 

 

2.3 Significance of the Study 

The COVID-19 pandemic resulted in significant deaths of Kenyans since its first occurrence in the 

country in March 2020. Aside from the deaths, the pandemic has also stalled economic progress for many 

people most of whom have no formal employment and rely on day-to-day casual jobs to make ends meet. Such 

like a mass it becomes difficult to lock it up due to the pandemic. As some blatantly put it persuading the 

government to open up the economy (removal of curfews, lockdowns): “Better let us die of COVID-19 while 

looking for food for our households than die locked up in the house due to starvation.” In the study, we have 

been able to establish that indeed vaccination exercises against COVID-19 exercise boosted herd immunity in 

the Kenyan population and thus lowered the infection rates. Such a positive result would encourage people to go 

for vaccination not only for COVID-19 but also for similar epidemics that may arise in the future. Furthermore, 

the result from this work will be useful to the government and other relevant authorities in planning for 

vaccinations to protect the population against COVID-19, and other diseases of similar infectious nature in the 

future. It will also be of benefit to the researchers in the same field. 

 

3. Methodology 
3.1 Introduction 

This chapter outlines various expounds on the SIR model and the associated techniques and methods that 

will be employed to achieve our objectives as outlined in chapter two. 

 

3.2 Study Design 
To obtain herd immunity, one needs to calculate the R0 first. The best way to arrive at the herd immunity 

of a population is to employ the use of compartmental models. Compartmental models are crucial mathematical 

tools used to establish the spread of infectious diseases. There are several such models in use since their 

inception. In a nutshell, compartmental models divide the population into different compartments which gives 

rise to various differential equations which are manipulated to give the desired output depending on the data 

given. 

 

3.2.1 Susceptible, Infected and Removed (SIR) Model 

For this study, to describe the dynamics of COVID-19 in Kenya we will use the SIR model whose initials 

stand for: Susceptible, Infected, and Removed. At any given time, individuals in a population, depending on 

their current status can be placed into different model compartments of the SIR Structure. SIR model together 

with the Next Generation Matrix will help us establish the Basic Reproduction Number in a population and 

hence determine the Herd immunity. 

 
Figure 3.1: Diagrammatic Representation of the SIR Model. 
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In 1927, Kermack and McKendrick formulated a mathematical theory of the epidemic processes whose 

basis was a simple deterministic model i.e. SIR model [10]. Many other models have been extended from it to 

date. 

The SIR model was selected for this work due to its simplicity and the nature of the data collected for 

this study. 

 

3.2.2 Differential Equations: 

The SIR model results in the following differential equations: 

 
 

3.2.3 Description of Variables and Parameters used in the model. 

1. S: The fraction of susceptible individuals (those able to contract the disease), 

2. I: The fraction of infectious individuals (those capable of transmitting the disease), 

3. R: The fraction of recovered individuals (those who have become immune). 

4. N : The total population size. 

5. Λ: Per-capita entry rate. 

6. β: Disease transmission rate. 

7. γ: Per- capita recovery rate. 

8. µ: Per-capita removal rate. 

 

Assumptions 

The following assumptions hold: 

1. Constant/closed population size, N. 

2. Constant rates i.e. transmission and removal rates. 

3. A well-mixed population i.e. one where an infected person has a probability of contacting any 

susceptible individual. 

 

3.3 Next Generation Matrix(NGM) Method 

In mathematical epidemiology, the Next Generation Matrix is used for deriving the Basic Reproduction 

Number in a compartmental model depicting the spread of infectious diseases. It is not only exclusive to 

epidemiology but it is also used in population dynamics to calculate the basic reproduction number for 

structured population models.[11] In the NGM, the R0 is defined as the spectral radius of the Next Generation 

Operator. In Mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its 

eigenvalues. 

To calculate the basic reproduction number by using a next-generation matrix, the whole population is 

divided into several compartments 

 

3.3.1 Next Generation Matrix Procedure: 

Here are the steps followed to derive the R0 Using NGM: 

1. Regroup the model equations into infected and non-infected classes 

2. For the infected class, we rearrange as shown: 

 

 
Where 

F= the rate at which new infected people enter the compartment 

V= the transfer of individuals out of the compartment 

F and V are m x m matrices which are obtained as follows: 
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3. We get F by differentiating the term in F partially with respect to the dependent variables. 

 
4. We get V by differentiating the terms in V partially with respect to the dependent variables. 

 
5. Find matrix FV

-1
. This matrix is known as the Next Generation Matrix. 

6. From the matrix result above, we find the eigenvalues. The dominant eigenvalue yields the R0 

 

Next-generation matrices are computationally worked out from the data collected, which is often the 

most productive approach where there are large numbers of compartmental. 

 

3.3.2 Finding R0 Using NGM 

The Infected class is: 

 
Which corresponds to: 

 
Where 

 

F= the rate at which new infected people enter the compartment 

V= the transfer of individuals out of the compartment 
 

Assumptions 
 

The following assumptions hold: 

1. Fi(0, y)=Vi(0, y)=0; for all y > 0 

(no new infections if no new infected people) 

2. Fi(x, y) ≥ 0; for all xi ≥ 0 and yi ≥ 0 

(no new infections if no new infected people) 

3. Vi(0, y) ≥ 0; for all yi ≥ 0 (empty compartments can only have inflows) 

4. ∑i Vi(x, y) ≥ 0; for all xi ≥ 0 and yi ≥ 0 (Sum is net outflow) 

5. System y
′
 = Vi(0, y) has unique asymptotically stable equilibrium, y* 

 

Thus: 

 
To obtain F and V: 

 
 

Evaluating F and V at the disease-free equilibrium point, i.e. (S*, I*, R*)=(1,0,0): 
 

We obtain 
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The inverse of V will be: 

 
 

Thus: 

 
This gives our R0 i.e. 

 
 

3.4 Ordinary Least Square Method 

Regression analysis is a fundamental statistical technique that entails modeling the relationship between 

a dependent variable and one or more independent variables. The Ordinary Least Squares (OLS) method is one 

of the most commonly used techniques for regression analysis [11]. 

OLS is a linear regression technique used to find the best-fitting line for a set of data points by 

minimizing the residuals i.e. the differences between the observed and predicted values. An alternative word for 

residual could be error. It does so by estimating the coefficients of a linear regression model by minimizing the 

sum of the squared differences between the observed values of the dependent variable and the predicted values 

from the model. It is easy to use and produces decent results hence its popularity. 
 

Other techniques include: 

1. Weighted Least Squares (WLS) 

2. Alternating Least Squares (ALS) 

3. Partial Least Squares (PLS) 

 

The OLS method is used to estimate the unknown parameters in a model. The method relies on 

minimizing the sum of the squared residuals between the actual values and the predicted values from the model. 

 

The sum of the squared differences is called the Residual Sum of Squares (RSS). OLS works to 

minimize the RSS by finding the values of the coefficients that result in the smallest possible RSS. The resulting 

line is called the regression line. This represents the best fit for the data. Mathematically, OLS can be 

represented as: 
 

Minimize Σ(yi − y˜i)
2 

(3.4.1) 

 

Where yi is the actual value and y˜i is the predicted value. 

The linear regression model used for determining the value of the response variable, yi, is represented as the 

equation below: 

y=b0+b1x1+b2x2+...+bnxn+e                                (3.4.2) 

 

Where: 

1. y is the dependent variable 

2. b0 is the intercept 

3. b1, b2, ...,bn are the coefficients of the independent variables x1, x2, ...,xn 

4. e is the error term 

 

The OLS method is used to estimate the unknown parameters (b1, b2, ...,bn) by minimizing the sum of the 

squared residuals (RSS). 
 

Assumptions of OLS: 

The following assumption ought to be valid when working with OLS: 
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1. Linearity: There must be a linear relationship between the dependent and indepen-dent variables. 

2. Independence: The observations must be independent of each other. 

3. Homogeneity of Variances: The variance of the residuals should be constant across all the levels of the 

independent variables. 

4. Normality: The residuals should be normally distributed. 

 

3.5 Data Collection 

The necessary data required for calculation of the Basic Reproduction Number for COVID-19 in Kenya 

and hence determine the herd immunity was obtained from Kenya’s Ministry of Health website [21]. It is a 

collection of data that was issued daily by the ministry officials with respect to the COVID-19 scenario in the 

country. It can thus be classified as the secondary data. 

 

3.6 Study Population 

The sample data used in the study as obtained from the Ministry of Health, Kenya, was distributed across 

the country. The population of Kenya as of the year 2022 was approximately 54, 027, 487 [39]. However, for 

this study sample population used in our study period indicated was 2, 926,470 people. The pandemic did not 

affect the country uniformly; urban areas were adversely affected compared to rural areas. 

 

Day Date Total Infected Discharged Deaths 

1 19-Mar-20 173 7 0 0 

2 24-Mar-20 82 9 0 0 

3 26-Mar-20 74 3 1 0 

4 28-Mar-20 81 7 0 1 

5 29-Mar-20 69 4 0 0 

6 30-Mar-20 260 8 0 0 

7 31-Mar-20 234 9 0 0 

8 01-Apr-20 380 22 2 0 

9 02-Apr-20 662 29 0 2 

10 03-Apr-20 362 12 0 1 

11 04-Apr-20 372 4 0 1 

12 05-Apr-20 530 16 0 0 

13 07-Apr-20 696 14 3 0 

14 09-Apr-20 308 5 4 1 

15 10-Apr-20 504 5 10 0 

16 11-Apr-20 491 2 2 0 

17 12-Apr-20 766 6 1 0 

18 13-Apr-20 674 11 15 1 

19 14-Apr-20 694 8 1 0 

20 15-Apr-20 803 9 12 1 

Table 3.1: A snapshot of COVID-19 Data for the first twenty days 

Source: Ministry of Health, Kenya 

 

Day Date Total Infected Discharged Deaths 

1 03-Apr-21 7139 1184 220 20 

2 04-Apr-21 6045 911 533 18 

3 05-Apr-21 2753 460 178 20 

4 06-Apr-21 2923 394 2217 14 

5 07-Apr-21 7423 1523 616 18 

6 08-Apr-21 11352 1698 456 16 

7 09-Apr-21 7300 1091 533 17 

8 12-Apr-21 2989 486 115 20 

9 13-Apr-21 6417 991 370 26 

10 14-Apr-21 7529 981 655 26 

11 15-Apr-21 5958 1091 392 4 

12 16-Apr-21 7753 1041 343 19 
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13 17-Apr-21 7184 1024 382 20 

14 18-Apr-21 3664 366 280 18 

15 19-Apr-21 2515 241 636 20 

16 20-Apr-21 5832 629 1560 18 

17 22-Apr-21 5673 904 88 20 

18 23-Apr-21 7036 773 762 23 

19 24-Apr-21 9316 1153 191 20 

20 25-Apr-21 4194 469 304 19 

Table 3.2: A snapshot of COVID-19 Data for the first twenty days in Kenya after the introduction of the 

Vaccines 

Source: Ministry of Health, Kenya 

 

4. Findings, Data Analysis and Discussion 
4.1 Introduction 

This chapter deals with the calculation of the R0 and herd immunity using the techniques outlined in the 

previous chapter. Thereafter, stability analysis on the SIR model is carried out; i.e. without and with 

vaccination. 

 

4.2 Findings 

4.2.1 Pre-Vaccination Findings 

COVID-19 pre-vaccination data between March 2020 to March 2021 was fed into the Python program 

to determine the average of the parameters necessary for determining the R0. The code used to accomplish this 

is shown in the appendix. 

 

The resulting values were: 

β = 0.0394399 

γ = 0.0275976 

R0 = 1.42874 

 

Using equation (1.1.1), we get the resulting Herd Immunity Threshold as 0.3001 i.e. 30.01% of the 

population needed to be vaccinated to control the spread of the virus in the country. We also determined the R0 

numbers after each month for the said period prior to the vaccination drive. This together with their resulting 

Herd Immunity Threshold is tabulated in Table 4.1 below. 

 
Figure 4.1: R0 and Herd immunity figures before Vaccination Exercise. 

 

4.2.2 Post-Vaccination Findings 

Similarly, COVID-19 data from April 2021 to March 2022 was also fed into Python soft-ware for the 

computation of parameters necessary to determine the R0 number. It should be noted that at this period 

vaccination drive against COVID-19 was underway. 

 

We obtained the following values: 

β = 0.14131 

γ = 0.13307 
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R0 = 1.06191 

 

Again, using equation (1.1.1), we got the resulting Herd Immunity to be 0.05829. This translates to 

5.829%. i.e. the portion of the population that now needs to be vaccinated to prevent the spread of the COVID-

19 virus in the population. 

 

The accompanying figures for the R0 numbers as well as the resulting Herd Immunity 

 

Threshold for each month are shown in Table 4.2 below:  

 
Figure 4.2: R0 and Herd immunity figures during Vaccination Exercise. 

 

 

 

4.3 Stability Analysis For SIR Model Without Vaccination 

Susceptible, Infected, and Removed model’s equations form a dynamical system; since all three variables 

vary over time. The stability analysis exercise helps us get answers to the following questions: 

1. Do we have constant solutions? 

2. If that is the case, do the solutions near the constant move towards or away from the constant solutions? 

3. How do the solutions behave as time, t approaches infinity? 

4. Do any solutions oscillate? 

 

The constant solution is generally referred to as equilibrium. The phase portraits of the dynamical system 

will either show the solutions having vectors moving towards the equilibrium value or away from the 

equilibrium value. If the solutions tend toward the equilibrium value, such point will be considered stable or an 

attractor. 

On the other hand, if the solutions of the system near the equilibrium value all tend away from the value, 

such point is said to be unstable, or a repelling point. 

We may have a situation where both phenomena happen i.e. some values tend towards the equilibrium 

point while some move away from it. This is called a saddle point. It is generally unstable. 

 

Terminologies in Stability Analysis 

1. Local Stability- Local stability means that all solutions of the system that have initial values within a 

particular domain of the feasible region approach the equilibrium point. Local stability of an equilibrium 

point means that if you put the system some-where near the point then it will move itself to the 

equilibrium point in some time. If DFE or EE is locally stable then all the solutions near the stable 

equilibrium will evolve with time to the equilibrium point. It also means that the equilibria are stable to 

small perturbations i.e. if you push the situation a bit out from the equilibrium point, then the situation 

will return on its own. 

2. Global Stability-Global stability means that all solutions of the system approach the equilibrium point 

independent of the initial values. It means the system will come to the equilibrium point point from any 

possible starting point. 
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Some cases show an equilibrium point at the origin but all trajectories near the equilibrium point 

stay a small distance away. This is a stable equilibrium point, but it is not globally asymptotically stable. 

The case where both eigenvalues are real, negative, and distinct produces a phase portrait that 

shows all trajectories tending toward the equilibrium point as t → ∞, the value of x(t) gets small, so it is a 

globally stable equilibrium point. 

 

4.3.1 Determining Local Stability of the System 

From our model, we had the following system of equations: 

 
Where N=S(t)+I(t)+R(t) 

 

With the initial conditions: 

1. S(0) ≥ 0 

2. I(0) ≥ 0 

3. R(0) ≥ 0 

 

It is obvious that only two variables are listed in the above system of equations, therefore it is enough to 

consider the first two equations only i.e.: 

 
The following set is positively invariant for the above system of equations: 

Ω={(S(t), I(t)) ∈ R
2

+, S(t) + I(t) ≤ 1} 

 
We get the equilibrium points by setting the equations (4.2.4) and (4.2.5) above equal to zero and solving 

the system for S and I. For our model, two equilibrium points exist: 

1. Disease Free Equilibrium Point E0 (S=1 and I=0). This is at the very beginning. 

2. Endemic Equilibrium Point,  

 

We solve for I to obtain the positive solution from equation (4.2.4): 

 
We substitute the equation (4.2.6) into equation (4.2.5) at equilibrium point: 

 
Simplifying: 
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Multiplying by -S: 

 
 

But µ=Λ 

 

Therefore: 

 
Factoring out µ, we get: 

 
This results in: 

 
Or: 

 

 

 

 
 

Solving the above, the discriminant, D, of the equation: 

 
 

We apply Jacobian to look at the linear stability of the equilibrium points: 

 
Disease Free Equilibrium Point 

Evaluating the Jacobian matrix at E0: 

 

At E0, S=1 and I=0: 

 
The corresponding characteristic equation for the Jacobian matrix at E0 is: 
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Solving the above, we get the following eigenvalues: 

λ1=−µ                                                                        (4.3.15) 

λ2 = β−γ−µ 

λ1 is obviously less than 0 

 

Looking at λ2: 

 

If: 

 

β − γ − µ < 0, then 

 

β < γ + µ Which implies: 

 

 
 

Or 

R0<1 
 

This shows that both eigenvalues are negative hence the Disease Free Equilibrium point is locally 

asymptotically stable. This implies that the disease will vanish from the population. 
 

The Disease Free Equilibrium Point will be unstable if β − γ − µ > 0 

 

Endemic Equilibrium Point 

 
 

Given earlier stated conditions: Λ = µ 

 
 

Putting the above into the Jacobian matrix: 
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From the above, we get the characteristic equation: 

 
Evaluating, we get: 

 
 

Solving equation (4.2.16): 

 
Alternatively: 

 
Since both coefficients in equation (4.2.16) above are both positive, it follows that the quantity of the 

discriminant under the square root is either smaller than µ
2
R

2
0, or greater than µ

2
R

2
0: 

 

• If µ
2
R

2
0 < 4µ(β − γ − µ) 

 

Then the eigenvalues are complex with the real part −µR0 which is a negative value also. 

 

• If µ
2
R

2
0 > 4µ(β − γ − µ) 

 
Then the discriminant value under the square root must be smaller in absolute value than µ

2
R

2
0, but still 

the real part is negative. As such, either way, we conclude that the Endemic Equilibrium is stable since the real 

parts of both eigenvalues are negative. This shows that the endemic equilibrium point is stable. 

 

The susceptible and infected population will survive in either of the cases and the phase planes will move 

toward the Endemic Equilibrium Point. 

 

Conclusion 
1. From the linear stability of the equilibrium points above, it can be observed that disease-free equilibrium 

and Endemic Equilibrium points cannot exist at the same time. 

2. If R0 < 1, then the Disease Free Equilibrium point is stable while if R0 > 1 then the Endemic Equilibrium 

point is stable. 

 

4.3.2 Determining Global Stability of the System 

We analyze the global stability of the disease-free equilibrium and Endemic Equilibrium using the Lyapunov 

function. 
 

 

Definitions: 
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• A function V(x,y) is said to be positive definite on a region Ω containing the origin if ∀(x, y) ̸= 0, V(x, 

y) > 0. 

• A function V(x,y) is said to be negative definite on a region Ω containing the origin if ∀(x, y) ̸= 0, V(x, 

y) < 0. 

• A function V(x,y) is said to be a Lyapunov Function on an open region Ω if the function is continuous, 

positive definite and has a continuous first Order Partial Derivatives on Ω. 

• LaSalle’s Invariance Principle is a criterion for the asymptotic stability of an au-tonomous dynamical 

system. 

 

The autonomous systems to which LaSalle’s Invariance Principle is applicable should be of the form: 

x˙ = f (x), f (0) = 0 (4.3.17) 

 

 

Theorem 4.3.1. Let x = 0 be an equilibrium point for the autonomous system (4.2.17) above. Let 

 

V: Ω → R be a continously differentiable positive definite function on a domain Ω ⊂ R
n
 containing the origin, 

such that V
˙
(x(t)) ≤ 0 in Ω. Let S = {x ∈ Ω : V

˙
(x) = 0} and suppose that no other solution can stay in S, other 

than the trivial solution x(t) ≡ 0. Then, the origin is locally asymptotically stable. If, in addition, V(x) is 

radially unbounded, then the origin is globally asymptotically stable 

 

Disease Free Equilibrium Point 

To establish the global stability of the Disease Free Equilibrium point we will use the Lyapunov function: 

 

Theorem 4.3.2. If R0  < 1, then the Disease Free Equilibrium point of the system is globally asymptotically 

stable on Ω. 

 

Proof. To establish the global stability of the Disease Free Equilibrium point, we construct the following 

Lyapunov function V : Ω → R 

 

Where V(S, I)=I(t). 

 

The Time derivative of V is: 

 

 

 

 
 

 

 

 

 

Furthermore: 



International Journal of Recent Engineering Research and Development (IJRERD) 

ISSN: 2455-8761  

www.ijrerd.com || Volume 08 – Issue 09 || September 2023 || PP. 05-34 

21 | Page                                                                                                                        www.ijrerd.com 

 
 

Thus by LaSalle’s Invariance Principle, the Disease Free Equilibrium point is asymptotically stable. 

 

Endemic Equilibrium Point 

Theorem 4.3.3. If there exists a Lyapunov function V(x,y), dependent on a system 
dx

dt =f(x,y) and 
dy

dt =g(x,y 

with equilibrium point (x,y)=(0,0), and 
dV

dt is negative definitive on an open region R containing the origin, then 

the zero solution of the system is asymptotically stable. 

 

If R contains all the possible values of (x,y) and satisfies theorem 4.3.3, the resulting stability of the 

system is said to be globally stable. 

 

The derivative of V with respect to the system 
dx

dt =f(x,y) and 
dy

dt =g(x,y) is defined as: 

 

 
 

Alternatively, we can determine the Endemic Equilibrium point using the theorem below: 

 

 

Theorem 4.3.4. The Endemic Equilibrium point E∗(S∗, I∗) of the system is globally asymptotically stable on Ω. 

 

Proof. We use a Lyapunov function V : Ω+ → R, where Ω+ = {S(t), I(t) ∈ Ω such that S(t) > 

 

0 and I(t) > 0}. 

 

Our function V is given by: 

 
 

 

Where Φ and Ψ are constants. 

Differentiating the Lyapunov function with respect to time, we get: 

 
 

Considering the equilibrium point, we get: 

 
 

This results in the following equation: 
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Further: 

 

 
 

Hence, by Lasalle’s Invariance Principle, the endemic equilibrium point is globally asymptotically stable. 
 

4.4 Stability Analysis For the SIR Model With Vaccination 

 
Figure 4.3: Diagrammatic Representation of the SIR Model with Vaccination. 

 
 

In this model, we analyze the stability of the model with induced vaccination. With vaccination, we will 

have a system of equations as follows: 
 

 
Where: 

a. S is the Susceptible population. 

b. I is the Infected Population. 

c. R is the Recovered population. 

d. V is the Vaccinated Population. 

e. Λ is the admission rate into the population.. 

f. µ is the mortality rate Population. 

g. P is the Vaccination rate. 

h. γ is the Recovery rate. 

 

And: 

 

S+I+R+V=1 

 

Only three variables are listed in the system of equations above.  Therefore, equation (4.3.3) may be ignored. 
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But µ=Λ 

 

Therefore, we only consider: 

 
The following set is positively invariant for the above system of equations: 

Ω={(S(t), I(t), V(t)) ∈ R
3

+, S(t) + I(t) + V(t) ≤ 1} 

 

4.4.1 Determining Local Stability of the System 

Two equilibrium points exist for the above model: 

a. Disease Free Equilibrium point E0(S = 1 − P, I = 0, V = P) 

 

b. Endemic Equilibrium point  

 

To show the existence of an endemic equilibrium point, we determine the value of I from equation (41). 

This value we substitute in equation (42), to get: 

 
 

Whose discriminant, D, is: 

 
 

For the positive solution, D ≥ 0 i.e. 

 
 
The new reproduction number is Rv = R0(1 − P) and Endemic Equilibrium point will only exist if Rv > 1 

 

We apply the Jacobian to determine the linear stability of the equilibrium points: 

 

 
Disease Free Equilibrium 

 
The characteristic equation corresponding to the Disease Free Equilibrium points is: 
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From the above determinant, we get three eigenvalues: 

λ1=−µ 

λ2=−µ 

λ3 =β(1−P)−γ−µ 
 

It is evident that λ1 and λ2 are negative. Checking λ3: 

 

a. If λ3 > 0, it implies,  β(1 − P) > γ + µ 

 

Meaning: 

 

R0(1 − P) > 1 or 

 

Rv > 1 

 

This means the disease-free equilibrium point is not locally asymptotically stable. 

 

b. If λ3 < 0, this implies,  β(1 − P) < γ + µ 

 

Meaning: 

 

R0(1 − P) < 1 or 

 

Rv < 1 

 

This means the system is stable since all eigenvalues are negative. This will imply there will be no 

epidemic. 

 

The trajectories will approach the disease-free equilibrium point. 

 

Endemic Equilibrium 

 

 
At E∗: 

 
 

V=P 

 

Putting the above into the Jacobian matrix: 
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From the above, we get the characteristic equation: 

 
 

Evaluating the above determinant, we get: 

 
 

It is noted that both coefficients  are positive. 

 

On solving the above equation we get the following eigenvalues: 

 
Which is equivalent to: 

 
 

Since μ[β(1 − P) − γ − μ] is positive, the quantity under the square root is either smaller than µ
2
R

2
v, or it is 

greater. 

 

If it is greater, then the solutions are complex with real part−µRv. If it is smaller in value than µ
2
R

2
v, still the real 

part of the eigenvalue will be negative. 
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Thus, either way, it can be concluded that the Endemic Equilibrium is stable because both real parts of 

the eigenvalues have negative values and λ1 is also negative. 

 

This implies that the Endemic Equilibrium point is locally stable; both the susceptible and the infected 

will survive in either case. 

 

It can also be seen that the infection rate has reduced because of the vaccination. 

 

4.4.2 Determining Global Stability of the System 

 

Disease Free Equilibrium 
 

Theorem 4.4.1. The Disease Free Equilibrium point of the system is globally asymptotically stable on Ω 
 

Proof. To establish the global stability of the Disease Free point, we make use of the fol- 
 

lowing Lyapunov function L : Ω → R and L(S, I, V) = S(t) + I(t) + V(t). 

 

Its derivative will be: 

 
Thus: 

If R0 < 1, then 

 
dL

dt (S, I, V) < 0; implying Disease Free Equilibrium is globally asymptotically stable. 
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Endemic Equilibrium 

Theorem 4.4.2. The Endemic Equilibrium point E∗(S∗, I∗, V∗) of the system is globally asymptotically stable on 

Ω 

 

Proof. We use a Lyapunov function L : Ω+ → R, where Ω+ = {S(t), I(t), V(t) ∈ Ω such that S(t) >0, I(t) > 0 and 

V(t) > 0} Our function L is given by: 

 
 

Where Φ, Ψ and Θ are constants. 

 

Differentiating the Lyapunov function about time, we get: 

 
Considering the equilibrium point, we get: 

 
Putting these values into the equation above, we get: 

 
 

Further: 

If Φ = Ψ + Θ = 1, then 

 
If S = S∗ and V = V∗ then, 

 
Hence, by Lasalle’s Invariance Principle, the endemic equilibrium point is globally asymptotically stable.  

 

4.5 Simulations 

We will simulate the results of both models using Python’s Matplot function to display the relationship 

between the Susceptible population and the Infected population four months after the pandemic was reported in 

the country as well as four months after the inception of the vaccination program in the country. 

 

4.5.1 Simulations for Period before Vaccinations 

At the inception, we have the Disease Free Equilibrium where S = 1 and i = 0. This automatically 

implies that R = 0 also. This when run in Python, produces the graph 4.12 shown below. For the first month 
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since the inception of COVID-19, the calculated parameters are: β = 0.0487299, γ = 0.0202825, µ = 0.000813 

and R0 = 2.40256 

 

The endemic equilibrium points for the first four months are shown in the figure 4.5 be-low. 

 
Figure 4.4: S, I and R relationship at DFE 

 

 
Figure 4.5: Endemic Points for the first four months of COVID-19 

 

Remark. The susceptible population decreases due to the presence of infection whereas the infected 

population rises because of infection. The linear stability for both points is calculated. Using equation (4.2.15) 

eigenvalues the disease-free equilbrium are given by: λ1 = 0 while λ2 = 2.142857. 

 

This implies that R0 = 2.142857 > 0 hence the trajectories do not approach the disease free equilibrium point. 

Using the equation(4.2.16), the characteristic equation for the Endemic Equilibrium Point is given by: λ
2
 + 

0.0019λ + 0.00002 = 0 

 

Its eigenvalues are: λ1 = −0.00095 + 0.00437i while λ2 = −0.00095 − 0.00437i. 

 

The real part for both eigenvalues is negative, hence the Endemic Equilibrium point is linearly stable as claimed 

from the theoretical results that if R0  > 0 then the Endemic 
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Figure 4.6: SIR Simulation for the 1st Month.        Figure 4.7: SIR Simulation for the 2nd Month. 

 
Figure 4.8: SIR Simulation for the 3

rd
 Month. Figure 4.9: SIR Simulation for the 4

th
 Month. 

Figure 4.10: SIR Simulation over time before vaccination drive. 

 
Equilibrium Point is linearly stable. The graphs in 4.10 above depict the trend for the first four months. 

 

4.5.2 Simulation For Period After Vaccinations 

We use the same parameters as used in the above simulations but with the addition of a parameter, p, 

where p is the vaccination rate for COVID-19. The Endemic Equilibrium Points, E∗ corresponding to the first 

four months after the inception of the vaccination drive in Kenya are given 4.11 below. It is noted that the 

susceptible population is re- 

 

 
Figure 4.11: Endemic Equilibrium Points. 

 

duced because of vaccination. The infected population reduces due to vaccination drive, whereas the vaccinated 

population increases. This is depicted in the graphs 4.17 below. The reproduction number, Rv, was obtained 

from: 

 

Rv = R0(1 − p). 

 

For the first instance above, Rv = 0.946022(1 − 0.0031) = 0.9453089 < 1 hence implies that the Disease Free 

Equilibrium is stable. 
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Figure 4.12: S, I, R and V relationship at DFE 

 

 
Figure 4.13: SIRV Simulation for the 1

st
 Month. Figure 4.14: SIRV Simulation for the 2

nd
 Month. 

 

  

 
Figure 4.15: SIRV Simulation for the 3

rd
 Month. Figure 4.16: SIRV Simulation for the 4

th
 Month. 

Figure 4.17: SIRV Simulation over time after vaccination drive. 

 

5. Conclusions and Recommendations 
5.1 Introduction 

The chapter uses the findings and results obtrained in chapter four to conclude the objectives as outlined 

in chapter two. Some possible recommendations for future research in this line are also outlined. 

 

5.2 Conclusions 

In summary, we tasked ourselves with establishing whether or not the Kenyan popula-tion gained herd 

immunity during the COVID-19 pandemic. Next, stability analysis was carried out on our SIR model. 

 

5.2.1 Specific Objective One 

First, we began by establishing the R0 numbers for the distinct periods: before and after vaccinations. The 

R0 number is at the core of determining herd immunity. 
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We established that the R0 number for the Kenyan population before the vaccination drivewas 1.42874. 

This gave a herd immunity of 0.3001 when calculated, implying that 30.01% of the population needed to be 

vaccinated to have the virus spread under control. On the other hand, we got R0 for the Kenyan population after 

the vaccination drive had started to be 1.06191, which translates to a Herd Immunity of 0.05829, implying that 

the population that now needs to be vaccinated to keep the pandemic under control is 5.829%. 

 

5.2.2 Specific Objective Two 

The reduction in herd immunity Threshold’s figures in objective (1) above from 30.01% to 5.829% can 

be attributed to the herd immunity obtained via vaccination or naturally. Natural acquired Herd Immunity 

occours when an individual who got infected acquires immunity when he recovers from the illness without 

necessarily getting vaccinated. 

 

5.2.3 Specific Objective Three 

Lastly, we carried out the stability analysis on our SIR model without and with vaccination. It is noted 

that Vaccination contributes significantly to the acquisition of herd immunity. For both cases, it was noted that 

the dynamics of infection depended on the value of the R0 number. 

For the first model, SIR, without vaccination, it was established that the Disease Free Equilibrium (DFE) 

exists only when the R0 < 1. In such scenarios, all the trajectories will be approaching the DFE. The stability of 

the local and global DFE points is also discussed. It was apparent that the two equilibriums, Disease Free 

Equilibrium and the Endemic Equilibrium, cannot coexist. Endemic Equilibrium exists only when R0 > 1. 

Global and local stability of the Endemic Equilibrium was also explored. 

For the second model, SIRV, vaccination was introduced, leading to a drastic change in the reproduction 

number, hence the Herd Immunity. As in the first model, the DFE is stable if R0 < 1 and the trajectories 

approach the Endemic Equilibrium Point when R0 > 1. 

It was seen in the graph depictions, the effect of the infection rate, β, on the susceptible and the infected 

population. The susceptible population gradually decreases while the infected population on the other hand rises 

as the infection rate, β. Consequently, as the vaccination is introduced into the susceptible population, the 

infected population de-creases. This can be attributed to herd immunity which was facilitated by the vaccination 

drive. 

 

5.3 Recommendation 

The input brought about by the study above will be useful for managing and controlling epidemics in the 

future. The results, subsequent analysis, and simulations done above are not only restricted to COVID-19 but 

could also be applied to other epidemiological diseases that could break out in developing countries such as 

Kenya. 

Future research could further examine the influence of herd immunity on a smaller geo-graphical area 

say, at the county level for example. This is because different counties were hit differently by the pandemic. It 

will also be phenomenal if thorough research on the comparative effects of herd immunity on different age 

groups e.g. how herd immunity compares between the young generation and the old generation. 

The study can also be taken to the next level to determine how the two types of herd immunity compare 

in terms of effectiveness once acquired: 

• Natural herd immunity 

• Acquired herd immunity gained via vaccination. 
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Appendix 
Python code for obtaining R0 before vaccination drive 

 
Figure 5.1: Python Code for estimation of R0 before Covid-19 vacccination practice. 
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Figure 5.2: Python Code for estimation of R0 during/after vaccines Covid-19 vacccination practice. 


