
International Journal of Recent Engineering Research and Development (IJRERD)

ISSN: 2455-8761

www.ijrerd.com || Volume 08 – Issue 08 || August 2023 || PP. 01-03

1 | Page www.ijrerd.com

A Note on the Multiplication of Strictly Upper Triangular

Matrices

Scott McDermott
1
, Ralph P. Tucci

2

Department of Mathematics and Computer Science, Loyola University New Orleans

6363 St. Charles Avenue, Box 35, New Orleans, LA 70118, USA

Abstract: We present an improved algorithm to multiply strictly upper triangular matrices.

Keywords: Upper triangular matrices.

1. Introduction
Throughout this paper 𝑅 will denote a ring of strictly upper triangular 𝑛 × 𝑛 matrices. We will develop

an algorithm to multiply such matrices using fewer multiplications than other known matrix multiplication

algorithms. We first describe three previously known algorithms and then describe and compare an improved

algorithm.

Algorithm 1.1 Naive Algorithm:Multiply each row times each column. This method requires exactly 𝑛3

multiplications.

Algorithm 1.2 Strassen’s Algorithm: The fastest known algorithm to multiply square 𝑛 × 𝑛 matrices is that

of Strassen [1, 2]. This algorithm requires Ο 𝑛log 2 7 multiplications and is optimal only for large matrices due

the overhead required for processing the inputs. Unfortunately, this algorithm does not speed up multiplication

of upper triangular matrices [1].

Algorithm 1.3 Naive Upper Triangular Algorithm: This algorithm simply allows us to ignore multiplications

involving 0 below the diagonals. Let 𝐴 and𝐵 be upper triangular 𝑛 × 𝑛 matrices and let 𝐶 = 𝐴𝐵. The number

of multiplications 𝑠 𝑘 needed to compute column 𝑘 in 𝐶 is exactly

s 𝑘 = 𝑗

𝑘

𝑗 =1

=
𝑘 𝑘 + 1

2

 (1)

Table 1 illustrates the number of multiplications per column for this algorithm.

Table 1: Number of Multiplications per Column

k Elements in column k Number of multiplications s(k)

1 c1,1 = a1,1b1,1 s(1) = 1

2 c1,2 = a1,1b1,2 + a1,2b2,2

c2,2 = a2,2b2,2

s(2) = 2 + 1 = 3

3 c1,3 = a1,1b1,3 + a1,2b2,3 + a1,3b3,3

c2,3 = a2,1b1,3 + a2,2b2,3

c3,3 = a1,3b3,3

s(3) = 3 + 2 + 1 = 6

In general, to compute column 𝑘 in this product we need to perform 𝑠 𝑘 multiplications.Hence the total

number of multiplications which this algorithm requires is exactly

 𝑠 𝑘

𝑛

𝑘=1

=
𝑛 𝑛 + 1 𝑛 + 2

6

 (2)

This formula can be verified by a straightforward induction argument.

International Journal of Recent Engineering Research and Development (IJRERD)

ISSN: 2455-8761

www.ijrerd.com || Volume 08 – Issue 08 || August 2023 || PP. 01-03

2 | Page www.ijrerd.com

Algorithm 1.4 Improved Upper Triangular Algorithm: Below we describe a novel algorithm which requires

fewer multiplications than the algorithms described above. The number of multiplications which this new

algorithm requires is exactly
𝑛 𝑛 − 1 𝑛 − 2

6

 (3)

2. An Improved Algorithm
Note that in Algorithm 1.3 we avoid multiplying by any element below the main diagonal, since all the

elements below the main diagonal are 0. We can speed up this algorithm for strictly upper triangular matrices by

not multiplying by the first column and last row, both of which consist entirely of 0. In fact, as we shall see, we

can actually eliminate two rows and two columns from each of the matrices being multiplied.

The basic idea is as follows. When we multiply matrices 𝐴 and 𝐵, we reduce 𝐴 and 𝐵 to smaller matrices

by eliminating those rows and columns whose products result in 0. We then compute the product 𝐶 of these

smaller matrices and use 𝐶 to construct 𝐴𝐵. This algorithm also allows us to calculate 𝐵𝐴.

Notation: When we compute 𝐴𝐵, we reduce 𝐴 to 𝐴𝐿and 𝐵 to 𝐵𝑅 . When we compute 𝐵𝐴, we reduce 𝐵 to 𝐵𝐿and

𝐴 to 𝐴𝑅. The subscripts 𝐿 and 𝑅 stand for “left” and “right”, respectively. We now present our algorithm.

Algorithm 1.4. Improved Upper Triangular Algorithm

Construct 𝐴𝐿.

1. Eliminate the first column of 𝐴. Every element in the first column of 𝐴 is 0, so any product involving

these elements is 0.

2. Eliminate the last row of 𝐴. Every element in the last row of 𝐴 is 0, so any product involving these

elements is 0.

3. Eliminate the rightmost column of 𝐴. The elements in the rightmost column of 𝐴are of the form 𝑎𝑗 ,𝑛 and

the elements 𝑏𝑛,𝑘 in 𝐵 are all 0.

4. Eliminate row 𝑛 − 1 of 𝐴. Row 𝑛 − 1 of 𝐴 has only one possible non-zero element, namely 𝑎𝑛−1,𝑛 and

the elements 𝑏𝑛,𝑘 in 𝐵 are all 0.

Construct 𝐴𝑅.

1. Eliminate the first column of 𝐴. Every element in the first column of 𝐴 is 0, so any product involving

these elements is 0.

2. Eliminate the last row of 𝐴. Every element in the last row of 𝐴 is 0, so any product involving these

elements is 0.

3. Eliminate the first row of 𝐴. The elements in the first row of 𝐴 are of the form 𝑎1,𝑗 and the elements 𝑏𝑘,1

in 𝐵 are all 0.

4. Eliminate the second column of 𝐴. The second column of 𝐴 has only one possible non-zero element,

namely, 𝑎1,2, and the elements 𝑏𝑘,1 in 𝐵 are all 0.

Construct 𝐴𝐵.

𝐴𝐵 consists of the 𝑛 × 𝑛 matrix with 𝐴𝐿𝐵𝑅 in the upper right corner and 0 elsewhere.

Example 2.1

Let 𝐴 =

0 1 2 3
0 0 4 5
0 0 0 6
0 0 0 0

 and 𝐵 =

0 10 22 1
0 0 9 8
0 0 0 3
0 0 0 0

Then 𝐴𝐵 =

0 0 9 14
0 0 0 12
0 0 0 0
0 0 0 0

 and 𝐵𝐴 =

0 0 40 182
0 0 0 54
0 0 0 0
0 0 0 0

International Journal of Recent Engineering Research and Development (IJRERD)

ISSN: 2455-8761

www.ijrerd.com || Volume 08 – Issue 08 || August 2023 || PP. 01-03

3 | Page www.ijrerd.com

To compute 𝐴𝐵, Algorithm 1.4 performs the following steps.

1. Construct 𝐴𝐿 =
1 2
0 4

 and 𝐵𝑅 =
9 8
0 3

 .

2. Compute 𝐴𝐿𝐵𝑅 =
9 14
0 12

 .

3. The product 𝐴𝐵 consists of the 4 × 4 matrix with 𝐴𝐿𝐵𝑅 in the upper right corner and 0 elsewhere.

This yields 𝐴𝐵.

To compute 𝐵𝐴, Algorithm 1.4 performs the following steps.

1. Construct 𝐵𝐿 =
10 22
0 9

 and 𝐴𝑅 =
4 5
0 6

 .

2. Compute 𝐵𝐿𝐴𝑅 =
40 182
0 54

 .

3. The product 𝐵𝐴 consists of the 4 × 4 matrix with 𝐵𝐿𝐴𝑅 in the upper right corner and 0 elsewhere.

This yields 𝐵𝐴.

We summarize our result in the following proposition.

Proposition 2.2

1. The number of multiplications which Algorithm 1.4 requires isexactly

 𝑠 𝑘

𝑛−2

𝑛=1

=
𝑛 𝑛 − 1 𝑛 − 2

6

 (4)

2. Algorithm 1.4 requires 𝑛2 fewer multiplications than Algorithm 1.3.

Proof 2.2

1. The formula for the number of multiplications which Algorithm 1.4 requires is the same as Algorithm

1.3, except that we reduce the dimension of the matrices which we multiply from 𝑛 to 𝑛 − 2.

2. The number of multiplications which Algorithm 1.4 saves isexactly

𝑠 𝑛 + 𝑠 𝑛 − 1 =
𝑛 𝑛 + 1

6
 +

𝑛 𝑛 − 1

6
 = 𝑛2

 (5)

Example 2.3

In Example 2.1 we see that Algorithm 1.3 requires 20 multiplications, while Algorithm 1.4 requires 4

multiplications. The number of savings is 16 = 𝑛2.

3. Conclusion
We summarize our results in the following table, where we list the number of multiplications used in

each algorithm.

Table 2:Comparison of Multiplications per Algorithm

Algorithm 1.1 Algorithm 1.2 Algorithm 1.3 Algorithm 1.4

Naïve Strassen Naive Upper Triangular Improved Upper Triangular

𝑛3 Ο 𝑛log 2 7 𝑛 𝑛 + 1 𝑛 + 2

6

𝑛 𝑛 − 1 𝑛 − 2

6

In summary, even though Algorithm 1.4 and Algorithm 1.3 are both Ο 𝑛3 , Algorithm 1.4 saves 𝑛2

multiplications.

References
[1]. Ruder, Jack, Alternatives to the Naive Algorithm for Matrix Multiplication, Semester Project for

Advanced Linear Algebra (Math 390), University of Puget Sound, Tacoma, WA., April 25, 2021.

[2]. Strassen, Victor, Gaussian elimination is not optimal, Numerische Mathematik, 13, pp. 354–356.

