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Abstract: The requests relatively to the large-sized mobile harbor cranes are increasing. Typically, harbour 

cranes are self-traveling but do not require any additional civil works to improve the bearing strength of 

foundation soil. In this work, we study the stability of a model for controlling the Sway of a Harbour crane. The 

multiple-input and multiple-output (MIMO) mechanical system is modeled by a set of nonlinear differential 

equations in which the mathematical model is divided into two subsystems: the first one for actuated outputs and 

the second one for underactuated outputs. The nonlinear feedback of the states is used to linearize the closed-

loop system. The control system is defined by linearly combining two different parts that are separately obtained 

from the actuated and unactuated system. Hurwitz’s criterion was applied to investigate the system stability for 

the equations describing the harbour crane dynamics. We reach the result to obtain the stability criteria for the 

"zero" dynamics relative to the harbour crane model. 

Keywords: Harbour crane, Underactuated mechanical systems, Stability analysis, Nonlinear feedback control.  
 

1 Introduction 
Cranes are very important machinery that has been strongly used for container handling in the harbour 

and object shifting on construction sites. Generally, cranes can be subdivided into two most important groups: 

gantry cranes and boom cranes. Boom cranes are industrial structures that are used in building construction, 

factories, harbours, and shipyard. Besides, they are largely used to transport heavy loads in shipyards, factories, 

and high building construction. These cranes are usually controlled manually where operators use a joystick and 

an accelerator pedal to control the movements and direction of the cranes.  

Over the years, a lot of studies have been focused on the development of efficient controllers for gantry 

cranes. However, only a limited number of studies have been carried out to design control approaches to reduce 

the payload sway of boom cranes.  

The recent work of Ramli et al. [1] allows having an exhaustive literature review of the strategies relative 

to the crane control and the relative published works. For example, concerning the studies relating to Anti-sway 

for Overhead and gantry cranes, we can mention, among many others, the works [2] and [3].  

Feedback and feed-forward control strategies are two major sway control schemes that can be utilized. 

Feedback control techniques use measurement and estimations of the system states to attenuate the swaying of 

the system. Feedback controllers can be designed to be robust to parameter uncertainties.  

On the other hand, feed-forward techniques for sway attenuation involve developing the control input 

through consideration of the physical and swaying properties of the system, so that system swaying at dominant 

response modes is reduced. This method does not require additional sensors or actuators and does not account 

for changes in the system once the input is developed. For boom cranes, feed-forward and feedback control 

techniques can be used for sway attenuation and position control respectively. Only a few works have 

considered anti-swing for boom (slewing) cranes. This is due to the complexity of the calculations for the 

motion control.  

The recent works of the author [4] and [5] are examples of feed-forward techniques for sway attenuation 

for boom (tower) cranes.  

With the recent trend toward containerization, it is more and more important for local small and medium-

sized harbors to use mobile harbor cranes that are capable of handling containers as well as other general 

cargoes in different ways. Therefore, demands for large-sized mobile harbor cranes, which are self-traveling and 

versatile but do not require any additional civil works to increase the foundation soil, are increasing. We are 

developing a method for harbor crane systems which has an anti-sway function.  

In the last years, some works have been done in order to control the sway of the payload for a Harbour 

(boom) crane.  

Mainly, the control schemes can be divided into open and closed-loop control approaches. Feedback 

control focuses on disturbance rejection and enables precise automatic positioning, while open-loop systems 

have primarily the purpose of reducing unwanted payload oscillations for a given reference.  

Some works concern the study of harbor cranes in the open sea. We can see, in example, the recent work 
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of D. Kim et al. [6]. This kind of work is extremely complex because it is necessary to take into account also 

disturbances such as waves and wind. In this case, the Mobile Harbor has 6 degrees of freedom motion caused 

by external disturbances such as waves and wind.  

We will limit ourselves to the study of Harbor cranes on the fixed surface, on land, not on the sea. 

Simplifying the problem in this case.  

In particular, we want to point out four recent and important works regarding Harbor cranes on the land. 

The works of E. Arnold et al. [7], J. Neupert et al. [8], T. Toyohara et al. [9] and D. Kim et al. [10] address the 

problem of studying an optimal control approach or an alternative feedback control system.  

As part of the study relative to the anti-sway control of harbor crane systems, we investigated the 

stability of the solution we defined. In fact, only when the solution defined is stable will we be able, in a 

subsequent work, to discuss its performance and operating characteristics.  

In general, our solution for controlling a harbor crane is in the context of underactuated systems. In 

practice, many control problems involve the â€œunderactuatedâ€• behavior of mechanical systems. In 

underactuated systems, the number of equipped actuators is less than that of the controlled variables. That is, 

actuators do not directly control some degrees of freedom. Within the scope of Harbour crane system we 

studied, the underactuated variables turn out to be the "sway" variables, that is the sway angles in tangential and 

normal direction to the slewing rotation of the boom.  

We will refer, in the analysis of the stability of the anti-sway system related to Harbor cranes, to the 

following fundamental works. The works we cite and use are those of L.A. Tuan et al. [11], L.A. Tuan et al. [12] 

and M.W. Spong [13].  

E. Lefeber et al. [14] investigated tracking control for underactuated ships in which three state variables, 

that is surge, sway, and yaw, were controlled by only two inputs: surge force and yaw torque.  

 

This paper is organized as follows.  

In Section 2 the dynamical model of the Harbour crane is described. The harbour crane is modeled 

defining a multi-body system including base, mast (fixed vertical column), jib, trolley and payload. From 

Lagrange equations, the five dynamical equations relative to the two sway angles (underactuated system) and to 

theother lagrangian variables (actuated system) are obtained, including also the dissipation function. By these 

equations, the designed control law for the presented model is obtained.  

In Section 3, a mathematical description of an Underactuated system and Stability Analysis for the 

some system are given.  

In Section 4 an application of the theory defined in Section 3 is given, developping the matrix equation 

for an Harbour crane system and arriving to analyze the stability of the control equations. In this way, we obtain 

the goal to establish the constraint conditions which result necessary to define the stability of the system.  

At the end, in Section 5 concluding remarks are defined. 

 

2 Modelling of an Harbour crane 
An Harbour (boom) crane is a multi-body system including base, mast (fixed vertical column), jib, 

trolley, and payload. The boom crane system considered in this work is shown in Figure 1 and it is schematized 

in Figure 2, where x and z represent the base coordinates. The crane system consists of a fixed vertical column, 

a rigid boom link, a hoisting line, and a payload.  ,  , and l  represent the slew angle, luff angle, the length of 

the hoisting line respectively. The slew angle is the rotary angle of the hub of the boom crane or slewing 

pedestal controlled by the operator’s slew command whereas the luff angle is the elevation or luffing angle of 

the boom link. Sway angles are excited as the system operates, namely the tangential sway t , and the radial 

sway r . In this study, the payload is regarded as a point mass and the system exhibits the behavior of a 

pendulum. In the described system with at least one first and one second strand of cables, both strands of cables 

extend from the tip of the boom to a suspension element such as a hook. The length of the cable can be adjusted 

by a corresponding drive, in order to move the load in the vertical direction.  
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Figure  1: General view of an Harbour crane. Side and top view. 

   
Figure  2: Geometric description of the harbour crane system. 
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With reference to Fig.2, the dynamics of the generalized Harbour crane is represented as a multi-body 

system with five independent degrees of freedom, described by five Lagrangian coordinates iq  :  

rq =1 : radial position of the boom on the axis x;  

=2q : slewing angle (rotation around the z axis);  

lq =3 : hoisting length of the cable (along the z axis);  

rq =4 : sway angle in the radial direction;  

tq =5 : sway angle tangential to the trajectory of the slewing direction;  

 

3 Mathematical description of an Underactuated system and Stability Analysis 
Basically, we refer to the paper of L.A. Tuan et al. [11]. In general, the physical behavior of a MIMO 

mechanical system is governed by a set of differential equations of motion. Consider an underactuated system 

with n degrees of freedom driven by m actuators ( nm < ). We will use the convention that matrix equations 

will be represented in bold. 

 

3.1  Mathematical description of an Underactuated system 

The mathematical model, which is composed of n ordinary differential equations, is simplified in matrix 

form as follows  

 

 QqGqqqCqqM =)(),()(    (1) 

where q  = 
nT

n Rqqq ],...,[ 21  is the vector of the generalized coordinates, and Q  
nR  denotes the 

vector of the control inputs. )(qM  = 
TqM )( = 

nxn

nxnji Rm   

  , ][   is the symmetric mass matrix, ),( qqC   

=
nxm

nxmji Rc   

  , ][   is the Coriolis and centrifugal matrix, )(qG  = 
nT

n Rggg ],...,[ 21  is the gravity 

vector. Given that the system has more control signals than actuators, Q  has only m  nonzero components as 

U  = 
mT

m Ruuu ],...,[ 21  being a vector of nonzero input forces. As an underactuated system, its n  output 

signals are driven by m  actuators. Its mathematical model is divided into two auxiliary dynamics, namely, 

actuated and unactuated systems. Correspondingly, we define the generalized coordinates aq  = 

mT

m Rqqq ],...,[ 21  for actuated states and uq  = 
mnT

nmm Rqqq 

 ],...,[ 21  for unactuated states. The 

matrix differential equation (1) can be divided into two equations as follows: 

  

 UqGqqqCqqqCqqMqqM uaua =)(),(),()()( 112111211    (2) 

  

 0=)(),(),()()( 222212221 qGqqqCqqqCqqMqqM uaua    (3) 

  

Matrices )(qM , ),( qqC   and )(qG  have the following form: 
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Obviously, )(qM  is symmetric positive definite. The actuated equation 2 shows direct relationship 

between the actuated states aq  and the actuators U . By contrast, the unactuated equation 3 does not display the 

constraint between the unactuated states uq  and the inputs U . Physically, input signals U  drive the actuated 

states aq  directly and the unactuated states uq  indirectly.  

The dynamics of the system, which is characterized by equations 2 and 3, allows to define a simpler 
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model with an equivalent linear form based on the nonlinear feedback method [13], being )(22 qM  a positive 

definite matrix. The unactuated states uq  can be determined from Equation 3 in the following way: 

 

 )}(),(),()(){(= 2222121

1

22 qGqqqCqqqCqqMqMq uaau     (5) 

  

In underactuated mechanical systems, we can take advantage of a fact: the unactuated state uq  has a 

geometric relationship with the actuated state aq . Therefore, control input U  indirectly acts on uq  through 

aq . Considering the actuated states aq  as the system outputs, the actuated equation 2 can be â€œlinearizedâ€• 

by defining  

 aa Vq =  (6) 

 with aV  
mR  as the equivalent control inputs. Control inputs U  are designed to drive the actuated states aq  

to the target values taq . In order to define the profiles of the state trajectories, the following equivalent control 

inputs are selected:  

 )()(= taapataadataa qqKqqKqV    (7) 

 Given that taq  = const , Equation 7 can be reduced into  

 )(= taapaadaa qqKqKV    (8) 

 with daK  and paK  positive diagonal matrices in 
mxmR    . Considering Equation 7 and the definition eq. 6, 

the differential equation of the control error is obtained by  

 0=apaadaa qKqKq     (9) 

 where taaa qqq =  is the control error vector of the actuated states. 

 

3.2  Stability Analysis of an Underactuated system 

The dynamics of the control error (eq. 9) is exponentially stable for every 0>daK  and 0>paK . In 

other words, the control errors of the actuated states aq  tend to zero as the time t becomes infinite.  

To obtain the stabilization of the unactuated states uq , the nonlinear feedback method can be applied to 

subdynamics relative to equation 2 in the following way:  

 apuuduuu qKqKVq   ==  (10) 

with duK  and puK  positive diagonal matrices in 
)(  )( mnxmnR  . uV  

mnR   are the equivalent 

control inputs of the unactuated states. The control input U ,defined by Equations 2 and 10 allows to ensure the 

stability of the unactuated states uq  because the control error dynamics, that is,  

 0=upuuduu qKqKq    (11) 

is stable for every 0>duK  and 0>puK . Therefore, if duK  and puK  are selected properly, then the 

equivalent inputs uV  can drive Harbour crane swings uq  toward zero. Therefore, the nonlinear controller 

asymptotically stabilizes the system state profiles. To stabilize the unactuated and actuated states, all equivalent 

inputs are obtained by a linear combination of aV  and uV  as:  

 ua VVV =  (12) 

where aV  and uV  are obtained, respectively, by eq.8 and eq.10.   is a weighting matrix. The control 

law U  (that is the system given by the generalized forces applied by the actuators) is obtained solving the 

actuated dynamics (that is by equation 2).  

The stability of the remaining part (the unactuated dynamics) of the closed-loop system, called the 

Internal dynamics, will be analyzed now. If the Internal dynamics is stable, then the asymptotic control problem 
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is solved.  

Considering eq. 12, we can obtain by eq. 5 the following relation:  

 

 uduadau qqqCKqMqqqCKqMqMq  )),()(()),()()((= 22212121

1

22    +  

 )()()()( 22121 qGqKqMqqKqM upudaapa    (14) 

As before defined, the local stability of the Internal dynamics is guaranteed if the zero dynamics is 

exponentially stable. If we set, at the end of the movement, taa qq =  in the internal dynamics eq.14 the zero 

dynamics of the system is obtained in the following way:  

 0=)}()()),()(){(( 2212221

1

22 qGqKqMqqqCKqMqMq upuuduu      (15) 

The dynamics relative to the end of the movement (zero dynamics) is expanded into a set of (nâ€“m) 

second-order nonlinear differential equations in which the (nâ€“m) components of the vector uq  are considered 

as variables.  

Now, in the definition and study of the zero dynamic, we refer to [15] and to [16] .  

The stability of the zero dynamics eq. 15 is analyzed using Lyapunov’s linearization theorem. By 

defining 2(n-m) state variables 
)(  2 mnxRz  , the zero dynamics eq. 15 is converted in a state form as follows:  

 )(= zfz  (16) 

where )(zf  is a vector of nonlinear functions, and 
)(  2 mnxRz   is a state vector. System dynamics eq. 

16 is composed of 2(n-m) first-order nonlinear differential equations. This nonlinear zero dynamics is 

asymptotically stable around the equilibrium point 0=z  0)==( uu qq   if the corresponding linearized 

system is strictly stable. If we linearize the zero dynamics around 0=z  then we obtain a linearized system in 

the following form:  

 )(= zAz  (17) 

where  

 0=)(= z
z

f
A




 (18) 

is a 2(𝑛-𝑚)𝑥2(𝑛-𝑚) Jacobian matrix of components ji xf  / . The stability of the linear system eq. 17 

can be analyzed by considering the positions of the eigenvalues of A  or using several traditional techniques, 

such as the Routh-Hurwitz criterion, the root locus method, and so on. Thus, by investigating the stability of the 

linear system 17, we can understand the dynamic behavior of the nonlinear system eq. 16, or equivalently, zero 

dynamics eq. 15, according to linearization theorem of Lyapunov.  

 

Therefore, we can summarize the stability criteria with the following statements:  

1) The nonlinear system 15 is asymptotically stable around the equilibrium point if the linearized system 17 

is strictly stable.  

2) The equilibrium point of the nonlinear system 15 is unstable if the linearized system 17 is unstable.  

3) The stability of the nonlinear system 15 cannot defined if the linearized system 17 is marginally stable. 

 

4 Application of the Stability Analysis to an harbour crane system 
4.1  Equation system and Matrices for an harbour crane 

We now pass to the application of the theory of stability, described in the section, to the system given 

by the equations relating to the dynamics of the harbor crane.  

Considering the five Lagrangian coordinates iq  described in Section 2, we derive the Lagrange 

function: 

 

 VT =L  (19) 

  

where T  is the Kinetic Energy of the crane system and V  is the Potential Energy. As consequence, 

we apply the generalized Lagrange equations  



International Journal of Recent Engineering Research and Development (IJRERD) 

ISSN: 2455-8761  

www.ijrerd.com || Volume 07 – Issue 06 || June 2022 || PP. 35-45 

41 | Page                                                                                                                         www.ijrerd.com 

 i

ii

Q
qqdt

d
=)(








 LL


 (20) 

 and so we can obtain the system of equations in the generalized coordinates iq  .  

In the Lagrange equations (20), the generalized non-conservative Forces iQ  are introduced relative to 

the dissipative forces. Particularly they represent the components, on the axes x and y, of air resistance forces 

acting on both the payload and boom system, the components of the wind force, the components of the forces 

due to the damping of the rotation movement.  

The Kinetic energy of the harbour crane is the sum of the corresponding terms for the rigid tower TT , 

for the boom BT  and for the payload LT . Therefore, the Kinetic energy T  of the crane system is given by  

 LBT TTTT =  (21) 

  

We focus our interest relative to the Lagrangian coordinates r ,  , l  r , t , since  , r  and l  are 

directly controlled by the generated profiles that the Plc sent to the axes drives. Assuming the small angles 

approximation, from Lagrange equations (20) we obtain the system of the following five equations, with three 

actuators used to stabilize five outputs: 

 

 rklmlmlmrmmF rrLrLtLLBr
  )(=  

 rLtLrLB lmlmlrmrm   22])([ 22   (22) 

 

  
 klrmlrmJrlmF tLtLBtL =  

 tLrLBrL lrmlrmrrmrlm   2222   (23) 

 

 lklmrmrmF lLtLrLl
  =  

 gmrmrm LtLrL    22
 (24) 

 

 
2)(=0   rLr

r
rLtLL lrmklmlmrm    

 gmlmlmllmlm rLtLrLrLtL    22)/(2 2
 (25) 

 

  
 rmlmklmlrm LtLt

t
tLrL 2)(=0 2   

 gmlmlmllmlm tLrLtLtLrL    22)/(2 2
 (26) 

where:  

 

Lm  and Bm  represent respectively the payload and the Boom mass;  

rk , k , lk , 
r

k  and 
t

k  represent respectively the damping parameters relative to the Lagrangian 

coordinates;  

BJ  represent the inertia momentum of the tower and the boom around the z axis.  

rF , F  and lF  represent respectively the generalized forces generated by the three actuators;  

g  is the gravity acceleration.  

Harbour crane dynamics can be represented by matrix equation 1 in which the component matrices are 

determined in the following way: 
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The elements of the )(qM  matrix are the following:  

;=;=;=;= 14131211 lmmmmlmmmmm LrLtLLB   

;=;=;=;= 25232221 rlmmrmmJmlmm LtLHtL   

;=;=;= 333231 LtLrL mmrmmmm    

;=;=;= 444241 lmmlmmmm LtLL   .=);(= 5552 lmmlrmm LrL    

The elements of the ),( qqC   matrix are the following:  

;2=;2=;])([= 1413

2

12 lmcmclrmrmc LtlrLB
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;2=;2=;))((2= 252421 lrmclrmcrlmmmc LLBlL
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rLtL rmcmc   

;2=;2=);/(2=;)(= 45444342   lmcklmcllmclrmc LrLrtLrL   

.2=;2=);/=);2(=;2= 5554535251 tLLtLrtLL klmclmcllmcllmcmc      

At the end, the elements of the )(qG  vector are defined as:  

.=;=;= 543 gmggmggmg tLrLL   

 

4.2  Stability Analysis for an harbour crane 

Applying the theory proposed in Section 3, we analyze the local stability of the internal dynamics eq. 14, 

or equivalently, the zero dynamics eq. 15. We define the control of the system starting by equations 9 and 11, 

where daK  ),,(= 321 dadada KKKdiag , paK  ),,(= 321 papapa KKKdiag , duK  ),(= 21 dudu KKdiag , 

puK  ),(= 21 pupu KKdiag  are the positive matrices of the control gains and 
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  is a weighting 

matrix. Therefore, applying matrix equation 15 to the equations of a harbour crane described by the equations 

from 22 to 26, and developing the matrices defined in eq. 15, the zero dynamics of the system is obtained as: 
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The stability of the zero dynamics is analyzed using linearization theorem of Lyapunov. Therefore, we 

set the four state variables as following: 

 

 ;=;=;=;= 4321 trtr zzzz    

  

From equations 27 and 28 we obtain the following system: 

 

 31 = zz  (29) 

  

 42 = zz  (30) 
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Considering the state vector z =  4321 zzzz , the nonlinear zero dynamics described by 

equations by 29 to 32, are asymptotically stable around the equilibrium point 0=z  if the linearized system is 

strictly stable. That involves a linear system (around 0=z ) as follows:  
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A  is a Jacobian matrix. It follows that the characteristic polynomial has the form: 
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The linearized system 33 is stable around the equilibrium point 0=z  if the matrix A  is a Hurwitz 

matrix. Applying the Hurwitz’s criterion (see [15]) and considering the result of the calculations, we come to the 

final goal of our work.  

In fact, as consequence of eq. 35, we can establish the constraint conditions for the controller parameters 

which result necessary to define the stability of the system. They are:  
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As we see from eq. 37 and eq. 39, the 2  parameter must be negative. 

 

5 Conclusion 
  In this work, we investigate the stability of a model for controlling the Sway of a Harbour crane. The set 

of nonlinear differential equations describing the Harbour crane dynamics is obtained and the system is divided 

into two subsystems: the first one for actuated outputs and the second one for unactuated outputs. The control 

system is defined by linearly combining two components that are separately obtained from the nonlinear 

feedback of actuated and unactuated states. Hurwitz’s criterion was applied to investigate the system stability 

for the equations describing the movement control of the harbour crane. We reach the goal to establish the 

constraint conditions which result necessary to define the stability of the system describing the harbour crane 

dynamics. 
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