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1 Introduction
The definition of interlace polynomials was originated when there was a need to count the number of 2-in,
2-out digraphs having a given number of Euler circuits in an Eulerian graph raised from DNA sequencing by

hybridization. Research has shown that special values of the interlace polynomial of a graph G can provide

information about some structural properties of G . Interlace polynomials share similar properties as Martin
Polynomials and Kauffman polynomials, which encode information about the families of closed paths in Eulerian
graphs [4]. In this paper, we investigate a special type of Eulerian graph that is built from a cycle by adding a
triangle to each edge of the cycle. We develop formulas for the interlace polynomials of such graphs, find
properties of such polynomials, and apply them to describe some structural properties of the ground graphs.

Consider a simple graph G = (V(G),E(G)). For a vertex VeV (G), N(v) denotes the set of
neighbors of Vv, that is, N (V) ={allverticesof Gadjacent to v}. The resulting graph by removing the

vertex V from G and all the edges adjacent to V is denoted G —V. The calculation of the interlace
polynomial of a graph G starts from building the pivot of G . Consider an undirected non-empty graph G
and an edge abe E(G) with a,b eV (G). The edge ab determines three neighboring classes: (1) the

vertices adjacent to both a and b, (2) the vertices adjacent to a alone excluding b, and (3) the vertices
adjacentto b alone but not including a. In [4], a toggling process is applied to construct the pivot of a graph.

Definition 1.1 Let G = (V (G), E(G)) be any undirected non-empty simple graph, a,b eV (G), and
ab e E(G) . We first partition the neighbors of a and b into three classes:

1. N(@)\({b}uN(b)),

2. N(b)\({a}uN(a)),

3. N(@)nN(b).

The pivot graph G® = (V (G™),E(G™)) of G, with respect to the edge ab, is the resulting graph

with the same vertex set: V (G) =V (G™). The edge set is given by the toggling process: YU,V eV (G)
with U, v belonging to two different classes of (1), (2), (3) shown above, uv e E(G) < uv ¢ E(G®)
(Refer to Figure 1.)

Note that G® = G™. The process of obtaining the pivot graph G® froma graph G on an edge ab
of G is called the pivot operation (or the toggling process). It is specifically defined on an edge of G . The

definition for the interlace polynomial of a simple graph G involves a toggling process and is defined
recursively as follows.
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Figure 1:[4] The Pivot Operation on the Edge ab

Definition 1.2 ([4] Interlace Polynomial) Let G be any undirected simple graph with n vertices (n > 0).
The interlace polynomial (G, X) of G is given below:

1. If G isempty (noedge), q(G,x)=x".
2. If G isconnected and has at least one edge ab € E(G), where a,b €V (G), then
q(G,x) =q(G—a,x)+q(G* —b, x).
3. If G=G,:--G, isthe disjoint union of K connected simple graphs G,,...,G, , then
9(G,x) = (G, x)a(G,, x)---a(Gy, X).

By Theorem 12 in [4], the map ( is well defined on all simple graphs, that is, the polynomial ¢(G, X)

is independent on the selection of the edge ab . Below we give some known results that relate the interlace
polynomials to the structural components of the ground graphs.

Theorem 1.3 Let G be any simple graph. The following results hold:
1. The degree of the lowest-degree term of (G, X) is x(G), the number of disconnected

components of G ;
2. deg(q(G,x)) > a(G), where a(G) isthe independence number, that is, the size of a

maximal independent vertex set of G ;
3. If G isaforestwith n vertices, then deg(q(G,x)) =n— u(G), where u(G) denotes

the size of a maximum matching in G .

Explicit or recursive formulas for some special graphs such as paths, cycles, stars, and complete graphs can

be found in literature. We summarize them below.
Lemma 1.4 Let M,N be positive integers. The interlace polynomials are known for the following graphs [3]:

1. (complete graph K with n vertices) (K, ,x)=2""x;

2. (complete bipartite graph Km'n)

q(Kpn X) = (L X+ X" (A x4+ XY+ X"+ X" =1,

3. (path P, with n edges) q(P,x)=2x, q(P,,X) = x*+2x,and for n>3,
(P, x) = a(P,1, ) +xq(P, 5, X);

4. (cycles) q(Cs, %) =4x, q(C,,x) =3x"+2x,and for n> 4,
4(Cr, %) = a(C, 2, X) + (P, 5, X) +xq(R,_4, X).

5. (star S, with n edges, N>2) q(S,,X) = X"+ X"+ 4+ x>+ 2X.
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We are interested in a type of Eulerian graph, denoted by I', . For n =3, the graph I', is derived from
the cycle C, where each edge of C, is used to build an additional 3-cycle (triangle) C,. In Section 2, we give
the definition of I, and introduce three related graphs A, A, , and W, . To develop recursive and explicit
formulas for the interlace polynomial of I',, we perform the pivot operation on I', in a certain way so that the
resulting graphs involve the graphs A, A, ,and W, ,and other simple graphs whose interlace polynomials are
already known. In section 3, we develop explicit formulas for the interlace polynomialsof A, A, ,and W, .In

Section 4, we develop recursive and explicit formulas for the interlace polynomial of T, . Properties of q(L,, X)
are given in Section 5, which include patterns of the coefficients and some special values of the polynomial
q(T,, X) . Lastly, in Section 6, we give an application of the interlace polynomial q(I’,,X) in calculating a rank

problem for a related matrix. Similarly, the interlace polynomials of A, A, ,and W, are applied to calculate
the ranks of 3 related matrices modulo 2.

2 The Graphs of Interest and Preliminary Results
We focus on a special type of Eulerian graph (a graph that contains an Eulerian circuit). The graph I, (

n > 3)is built from the cycle C, (called the center cycle) by adding an additional cycle C, to each edge of the
center cycle. By the definition, every vertex of I, has degree two or four. We start by demonstrating the smallest

such graph, I';. We show the decomposition process and how the interlace polynomial is developed.

Example 2.1 Thegraph I’y is shown below, which is built by adding an additional triangle (C, ) to each edge
of the center C, . The graph has 6 vertices and 9 edges. The interlace polynomial of T, is

q(T, X) = x* +10x* +8X. We perform the toggling process on the edge ab .

[scale=0.75] [fill] (0,0) circle [radius=0.075]; at (2.2,2.45) a; (0,0)-(2,0); [fill] (2,0) circle
[radius=0.075]; (0,0)—(1,1); at (0.75,1.1) C; [fill] (1,1) circle [radius=0.075]; (1,1)-(2,2); at (-0.3,0) e;
[fill] (2,2) circle [radius=0.075]; at (2,-0.4) d; at (4.3,0) f; (2,00-(4,0); [fill] (4,0) circle [radius=0.075];
(4,0)—(3,2); [fill] (3,1) circle [radius=0.075]; at (3.2,1.3) b; (1,1)-(2,0); (2,00~(3,1); (1,1)—~(3,1); [thick, -,
red] (3,1)—(2,2);

a

d

Figure 2:The Graph I'; with the Selected Edge ab .

Note that the edge ab results in only two neighboring sets: N(a)N(b)={c} and
N (b)\ ({a}u N (a)) ={d, f}. The pivot I has the same vertex set as that of T',, but Cf is added as an

edge and cd is not an edge in the pivot. The graph I'; and its pivot F3ab are shown below:

[scale=0.75] [fill] (0,0) circle [radius=0.075]; (1,1) circle [radius=0.45]; at (2.2,2.45) a; (0,0)—(2,0);
[fill] (2,0) circle [radius=0.075]; (0,0)—(1,1); at (0.75,1.1) C; [fill] (1,1) circle [radius=0.075]; (1,1)—(2,2);
at (-0.3,0) e; [fill] (2,2) circle [radius=0.075]; at (2,-0.4) d; (3,0) circle [x radius=1.3, y radius=0.3]; at
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(4.40) f; (2,00-(4,0); [fill] (4,0) circle [radius=0.075]; (4,0)—(3,1); [fill] (3,1) circle [radius=0.075]; at
(3.2,1.3) b; [thick, -, green] (1,1)-(2,0); (2,0-(3,1); (1,1)-(3,1); (3,1)—(2,2); at(5.51) —>;

[fill] (7,0) circle [radius=0.075]; at (9.2,2.45) a; (7,0)-(9,0); [fill] (9,0) circle [radius=0.075];
(7,0)-(8,1); at (7.75,1.1) c; [fill] (8,1) circle [radius=0.075]; (8,1)—(9,2); at (6.8,0) e; [fill] (9,2) circle
[radius=0.075]; at (9,-0.4) d ; at (11.3,00 f ; (9,00(11,0); [fill] (11,0) circle [radius=0.075];
(11,0)—(10,1); [fill] (10,1) circle [radius=0.075]; at (10.2,1.3) b; [thick, -, red] (8,1)—(11,0); (9,0)—(10,1);
(8,1)—(10,1); (10,1)-(9,2); at(2,-1.2) I; at(9,-1.2) F3ab;

(@] a

d
rg

Figure 3: The Graph I, and its pivot T2

We first “decompose” the graph I’ into two smaller graphs I; —a and F3ab -b:

[scale=0.75] [fill] (0,0) circle [radius=0.075]; (0,0)—(2,0); [fill] (2,0) circle [radius=0.075]; (0,0)—(1,1);
at (0.75,1.1) c; [fill] (1,1) circle [radius=0.075]; (1,1)—(2,0); at (-0.3,0) e; at (2,-0.4) d; at (4.4,0) f;
(2,0)—(4,0); [fill] (4,0) circle [radius=0.075]; (4,0)—~(3,1); [fill] (3,1) circle [radius=0.075]; at (3.2,1.3) b ;
[thick, -, green] (0,0)-(1,1); (2,0)—(3,1); (1,1)-(3,1); at(5.51) +;

[fill] (7,0) circle [radius=0.075]; at (9.2,2.45) a; (7,0-(9,0); [fill] (9,0) circle [radius=0.075];
(7,0-(8,1); at (7.75,1.1) c; [fill] (8,1) circle [radius=0.075]; (8,1)—(9,2); at (6.8,0) €; [fill] (9,2) circle
[radius=0.075]; at (9,-04) d ; at (11.30) f ; (9,0-(11,0); [fill] (11,0) circle [radius=0.075];

(11,0)-(8,1); [-> red] 9.2)-(8.1); at(2,-1.2) [, —a; at(9,-1.2) I —b;
a

[ rab —p

Figure 4: Decomposition by Toggling I'; at ab.
Next, we toggle I, —a atthe edge ce:

[scale=0.75] [fill] (0,0) circle [radius=0.075]; (0,0)—(2,0); [fill] (2,0) circle [radius=0.075]; (0,0)—(1,1);
at (0.75,1.1) c; [fill] (1,1) circle [radius=0.075]; at (-0.3,0) €; at (2,-0.4) d; at (4.4,0) f; (2,0-(4,0);
(2,0)—(1,1); [fill] (4,0) circle [radius=0.075]; (4,0)—(3,1); [fill] (3,1) circle [radius=0.075]; at (3.2,1.3) b;
[thick, -, green] (0,0)—(1,1); (2,0)—(3,1); (1,1)—(3,1); at(2,-1.5) F;b —a; at(5.5,5) —; at(9,-1.5) A,;
at (14,-1.5) C,; [fill] (7,0) circle [radius=0.075]; (7,0)—(9,0); [fill] (9,0) circle [radius=0.075]; (11,0)—(10,1);
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at (6.75,0) e; [fill] (10,1) circle [radius=0.075]; (9,0)-(11,0); at(9,-.4) d; [fill] (11,0) circle [radius=0.075];
(9,00-(10,1); at(12,.5) +;

(14,0)—(16,0); [fill] (14,0) circle [radius=0.075]; [fill] (13,1) circle [radius=0.075]; (13,1)—(14,0);
(16,0)—(15,1); (13,1)—(15,1); [fill](16,0) circle [radius=0.075]; [fill](15,1) circle [radius=0.075];

( b
N ZaN N /'\ N . E
€& = » f Ce . .
d d
l‘gb —a Ay 'y

Figure 5:Pivoting I'; —a atthe Edge ce
Furthermore we toggle T'2° —b at the edge ac which results in C, and K,P, (see the last piece in
Figure 6). Note that the graph A, can be further decomposed into C, and K,P, and thus the interlace

polynomial of I'; can be calculated through that of several smaller graphs derived from the above toggling
process. These decomposition processes are shown below.

[scale=0.75] [fill] (0,0) circle [radius=0.075]; (0,0)—(2,0); [fill] (2,0) circle [radius=0.075]; (0,0)—(1,1);
at (0.75,1.1) c; [fill] (1,1) circle [radius=0.075]; [fill] (2,2) circle [radius=0.075]; at (2,-0.4) d ; at (4.4,0)
f: (2,0-(4,0); [fill] (4,0) circle [radius=0.075]; (4,00~(3,1); (1,1)—(2,2); (3,1)~(2,2); [fill] (3,1) circle
[radius=0.075]; at(3.2,1.3) b; (1,1)-(2,0); (2,0-(3,1); (1,1)—(2,0); (1,1)—(3,1); at(5.51) —>;

[fill] (7,0) circle [radius=0.075]; (7,0)-(9,0); at (9,-3) d; at (7.7 ,1.1) c; [fill] (7,0) circle
[radius=0.075]; (7,0)-(8,1); (9,0)—(11,0); (9,0)—(8,1); at (3.2,1.3) b; at (2,2.3) a; at (-0.3,0) e; [fill]
(9,0 circle [radius=0.075]; [fill] (8,1) circle [radius=0.075]; at (6.7,0) €; at (7.7,1.1) C; at (11.3,0) f;
(9,0)-(11,0); [fill] (11,0) circle [radius=0.075]; (11,0)—(10,1); [fill] (10,1) circle [radius=0.075]; at (10.2,1.3)
b; (9,0-(10,1); (8,1)—(10,1);

at (12,1) +;

at (12.7,0) e; at (152.3) a; at (17.3,0) f: at (15-3) d; (13,00-(15,0); [fill] (13,0) circle
[radius=0.075]; [fill] (15,0) circle [radius=0.075]; (15,0)—(17,0); (13,0)—(14,1); (14,1)—(15,2); [fill] (15,2)
circle [radius=0.075]; [fill] (14,1) circle [radius=0.075]; [fill] (17,0) circle [radius=0.075]; (17,0)—(14,1); at

(13.7,1.1) ¢; at(2,-12) Ty; at(15-12) T2 —b; at(9,-1.2) [, —a;

at (0,-4) —;

[fill] (1,-4.5) circle [radius=0.075]; (1,-4.5)—(3,-4.5); [fill] (3,-4.5) circle [radius=0.075];
(2,-3.5)—(1,-4.5); [fill] (2,-3.5) circle [radius=0.075]; (2,-3.5)—(3,-4.5);

at (4,-4) +;

[fill] (5,-4) circle [radius=0.075]; (6,-3.5)—(6,-4.5); [fill] (6,-3.5) circle [radius=0.075]; [fill] (6,-4.5)
circle [radius=0.075];

at(7,-4) +;

(8,-3.5)—(8,-4.5); [fill] (8,-3.5) circle [radius=0.075]; [fill] (8,-4.5) circle [radius=0.075];
(9,-3.5)—(9,-4.5); (8,-3.5)—(9,-3.5); [fill] (9,-3.5) circle [radius=0.075]; [fill] (9,-4.5) circle [radius=0.075];
(8,-4.5)—(9,-4.5);

at (10,-4) +;

(11,-4)—(12,-4); [fill] (11,-4) circle [radius=0.075]; [fill] (12,-4) circle [radius=0.075]; (12,-4)—(13,-4);
(11,-4)—(11.5,-3); [fill] (13,-4) circle [radius=0.075]; [fill] (11.5,-3) circle [radius=0.075]; (13,-4)—(11.5,-3); at
(14,-4) +;

(15,-4)—(16,-4); [fill] (15,-4) circle [radius=0.075]; [fill] (16,-4) circle [radius=0.075]; (16,-4)—(17,-4);
[fill] (17,-4) circle [radius=0.075]; [fill] (16,-3) circle [radius=0.075];

5| Page www.ijrerd.com



International Journal of Recent Engineering Research and Development (IJRERD)
ISSN: 2455-8761
www.ijrerd.com || Volume 07 — Issue 04 || April 2022 || PP. 01-18

— i i + e I + + [ + e— e @

Figure 6: Decomposition of I’ into Smaller Pieces.
Briefly, I; = (C;+ KR, +C,)+(C, +K,R,).
By Definition 1.2 and Lemma 1.4, we obtain
q(I5,x) = a(Cs, x) + xq(R, X) +2q(C,, X) + xq(F,, X)
= 4%+ X(2X) + 2(3x% + 2X) + X(x* + 2X) = x> +10x” + 8x.

Before we formally define I', for n >3, we introduce three related graphs A, A, ,and W, for
nx1.

Definition 2.2 Let N be a positive integer.
1. Thegraph A, isa“line-up” of N copiesof C,’s shown below:

[scale=0.75] [fill] (0,0) circle [radius=0.075]; at (1,1.35) Vv, ; (0,0-(2,0); (4,0)-(4.30);
(6.7,0)—(7,0); [fill] (2,0) circle [radius=0.075]; (0,0)-(1,1); at (2,-0.35) Uu,; [fill] (1,1) circle [radius=0.075];
at (3,1.35) v,; at (8135) v, ,; at (10,1.35) v, ; at (4,-0.35) U;; at (7,-0.35) U,,; (2,0)-(4,0);
(2,0)—(1,1); [fill] (4,0) circle [radius=0.075]; (4,0)—(3,1); [fill] (3,1) circle [radius=0.075]; at (9,-0.35) U, ;
(2,00-(3,1); (3,0)—(4,0); at (5,0) ---; at(6,0) ---; [fill] (7,0) circle [radius=0.075]; (7,0)—(9,0); [fill] (9,0)
circle [radius=0.075]; (9,0)-(10,1); at (0,-0.35) u,; at (11,-35) U,,; (7,0-(8,1); (9,0)-(11,0); [fill]

(8,1) circle [radius=0.075]; [fill] (10,1) circle [radius=0.075]; (9,0)—(8,1); (11,0)-(10,1); [fill] (11,0) circle
[radius=0.075];

U1 U9 Un-1 Un

uq U us Un-1 ln Un+1

Figure 7:The Labeled Graph A, .

2. Refer to Figure 2.2. The graph A, is the resulting graph by adding a vertex U, and anedge U,U, to A, .
Precisely, A, —U, =A,.Thegraphof A isshown inthe Figure below.

[scale=0.75] [fill] (0,0) circle [radius=0.075]; at (-0.6,0) U,; at (2,-.35) U,; at (3,1.35) v,; at
(10,1.40) v,; (0,0)—(2,0); [fill] (2,0) circle [radius=0.075]; (2,0)—(4,0); [fill] (4,0) circle [radius=0.075];
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(4,00—(3,1); at (11.35,-0.35) u,,; [fill] (3,1) circle [radius=0.075]; (2,0)—(3,1); (3,0)—(4,0); (4,0)—(4.3,0);

(6.7,00-(7,0); at (5,0) ---; at (6,00 ---; [fill] (7,0) circle [radius=0.075]; (7,0)—(9,0); [fill] (9,0) circle
[radius=0.075]; (9,0)—(10,1); (7,0)-(8,1); (9,0)-(11,0); [fill] (8,1) circle [radius=0.075]; [fill] (10,1) circle
[radius=0.075]; (9,0)-(8,1); (11,0)—(10,1); [fill] (11,0) circle [radius=0.075];

" Un

g e /\ /\ \

Uy U1
Figure 8:The Graph A, Satisfying A, —U, = A, .

3. Similarly, if we add one more vertex V, and one more edge V,U,,, at the other end of A, , we obtain the
graph W, , which satisfies W, —u = A and W, —{u,,V,} = A, . Here is the graph of W, :

[scale=0.75] [fill] (0,0) circle [radius=0.075]; (0,0)—(2,0); [fill] (2,0) circle [radius=0.075]; at (-0.6,0)
U,; at (2-4) u,; at (3135 v;; at (8135 Vv,,; (20)-(40), I[fill] (40) circle [radius=0.075];

(4,0)~(3,1); [fill] (3,1) circle [radius=0.075]; (2,0)-(3,1); (3,00~(4,0); (4,00~(4.3,0); (6.7,0)~(7,0); at (5,0)
--+; at (6,0) ---; [fill] (7,0) circle [radius=0.075]; (7,0)~(9,0); [fill] (9,0) circle [radius=0.075]; (7,0)~(8,1);

(9,0)-(11,0); at (9,-0.35) u at (11.4,0) v, ; [fill] (8,1) circle [radius=0.075]; (9,0)—(8,1); [fill] (11,0)
circle [radius=0.075];

n+l;

th Un

lp e A A—Qf'[}

(15 Un+1

Figure 9: The Graph W, Satisfying W, —u, = A, .

First let us examine the case when N = 3. Itisobviousthat A; = C,.Bytoggling A, attheedge U,U,
. A, is decomposed into A, —U, =C, and A,°* —u, = K,P,. Thus q(A;,X) = q(C,,X)+xq(P, ).
With a similar procedure, by toggling W, at the edge U,U, in Figure 2.2, the graph W, decomposes into two
graphs W, —U, = A, and W, 9% —u, = K,P, . By Lemma 1.4, q(C,,X)=4x,q(P,X)=2x , and
(P, X) = X* +2X . Thus the interlace polynomials of A,, A,,and W, are obtained as follows.
Lemma 2.3

1. g(A,,x)=0q(C,, x) = 4x;

2. q(AL,X)=2x(X+2);

3. qW,,X) = x(x+2)>.

Now we define the main graph of interest in this study, named as I, .

Definition 2.4 For n >3, the graph I, is the resulting graph by gluing the two end vertices, b and C, of

A, sothat I, hasacentercycle C, andacycle C, (represented by a triangle) was build from each edge of
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the center C,,.

For N >4, the graph I', with labeled vertices is shown below in Figure 10 below.

[scale=0.75] [fill] (0,0) circle [radius=0.075]; at (1,1.35) V,; at (3,1.4) V,; at (2-0.3) U,; at
(-0.35, 0) u,; at (4, -0.35) uU,; at (5.5, -1.85) U,; (0,00-(2,0); (4,0-(4.3,0); (6.7,0—(7,0); [fill] (2,0)
circle [radius=0.075]; [fill] (9,-2) circle [radius=0.075]; [fill] (2,-2) circle [radius=0.075]; (0,0)—(1,1);
(5.5,-1.5-(9,-2); (5.5,-1.5)-(2,-2); (0,0)-(5.5,-1.5); (2,-2)-(0,0); [fill] (5.5,-1.5) circle [radius=0.075]; at
(2-24) v,; at(9,-24) v,,; at(10,1.35) v, ,; at (8,1.35) V, 5; at (11.7,-0.1) u,_,; [fill] (1,1) circle

[radius=0.075]; at (5.5,-.75) C,; (2,0)-(4,0); (2,0)-(1,1); [fill] (4,0) circle [radius=0.075]; (4,0)—(3,1);
[fill] (3,1) circle [radius=0.075]; (2,0)-(3,1); (3,0)-(4,0); at (5,0) ---; at (6,0) ---; [fill] (7,0) circle
[radius=0.075]; (7,0)—(9,0); [fill] (9,0) circle [radius=0.075]; (9,0)—(10,1); (7,0)—(8,1); (9,0)—(11,0); ([fill]
(8,1) circle [radius=0.075]; [fill] (10,1) circle [radius=0.075]; (9,0)-(8,1); (11,0)-(5.5,-1.5); (11,0)—(9,-2);
(11,0)—(10,1); [fill] (11,0) circle [radius=0.075];

Un—3 Un-2

Figure 10: The Graph I', with Labeled Vertices.

The graph I', ismadeof n triangles (C;) each sharing an edge with the center cycle C,,. In Figure 10,
the top row has N—2 triangles. The main goal of this paper is to develop recursive and explicit formulas for the
graph T, . Later we show that a toggling process on I', will resultin 3 types of graphs: A, , A, ,and W, for
some K with 1<k <n—1. We first study the interlace polynomials of these graphs.

The three graphs A, , A, , and W, are closely related. As shown before, A, —U,=A,,

W, —u, =A

n

n L
v
An —Vi :Wn—l = Annun+1 -u

formulas for the interlace polynomials of A, A, ,and W, .

. ng o and A—{u,,v,}=W, ,. Below we give explicit

Theorem 2.5 For n>1,
1. g(A,,x)=2x(x+2)";
2. q(A,,X)=2q(A, 4, X) = 4x(x+2)";

3. W, ,x)=x(x+2)"",

Proof.
Theresults for N =1 isshownin Lemma2.3. For N> 2, thegraph A, hasasimple recursive formula.

Refer to Figure 2.2. By toggling the edge U,V, , we obtain two isomorphic graphs: A, —U, = A:lvl -V, =A,
. Thus Q(A,,X) =2q(A,_;, X). We then develop a recursive formula for q(A,,X) and use it to obtain
explicit formulas for all the three graphs. By the toggling processon A, atthe edge U,U, (refer to Figure 2.2),
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we obtain two graphs: A, —U, = A, and A% —u, = K,A, . Thus
A(Aq %) = Xq(Aq1, X) + (A, X) = (X+2)G(A 4, X)-

1. FromLemma 2.3, q(A;,X) = 2X(X+2) . Itis straightforward to check that
QA X) = (X+2)A(A 4, X) = (X+2)2 (A5, X) =+
= (X+2)"q(A,, X) = (X+2)"F(2X)(x+2) = 2x(x +2)".

2. From (1), q(A,,X) =2q(A,_,,X) = 4x(x+2)"".

3. Bytoggling A, attheedge VU
q(An’X) = q(An _Vn’x) + q(/\\lnnun+1 —Upg X) . But An -V, = Avr?um—l —Una ;Wn—l' Then
q(A,,x) = 2qW, _,,X) andthen q(W,,X) =q(A,.,, X)/2 = x(x+2)"".

ne1» We have

3 Properties of I', and the Interlace Polynomial
By the definition of I, it is straightforward to prove the following basic graph theory properties of the

graph I, .

Theorem 3.1 Refer to Figure 10 for the labeled graph I, (n>3).
1. T, isan Eulerian graph with 2n verticesand 3n edges. Ithas n vertices of degree 2 and

n vertices of degree 4 ;
2. The independence number of I', is n.

3. The size of a maximal matchingof T’ is ©(G)=n.
4. The edge-connectivity and vertex-connectivity of I, are both 2.
5. The circumference of T, is |V (I',)|=2n.

6. The diameter of I, is n+2 if N isevenand nT-’_l if N isodd.

Proof. (1) The degree of every vertex of I iseven,so, I, isEulerian. For (2), amaximum independent
set is given by all the N vertices of degree 2, that is, {Vl, V... ,Vn} . (3) A maximal matching is made of the n
edges U,V;,U,V,,...,U.V,. (4) Since I, is Eulerian, both edge-connectivity and vertex-connectivity are at
least 2. The connectivity is 2 because I’ has a vertex of degree 2. (5) The Euler cycle U,V,U,V,...U.V U, is
the longest cycle. (6) When N is even, the distance between V; and V., is maximum by the path
ViUyUs . UpVooUn 22V (2720 Which is of length (N+2)/2. So d(Vy,V,,2,) = (N+2)/2.1f n is odd,
the distance between V, and V,.qy, is maximal with d(V;,V(,.5,,) = (N+1)/2. It is achieved by the path
ViUyUy .. U gy0Vniay2 Which is of length (n+1)/2.,

Next we develop a recursive and an explicit formula for the interlace polynomial of I, .

Theorem 3.2 Consider the graph I', for n>3.

1. If n> 3, the interlace polynomial q(T’,,X) satisfies the recursive relation:
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q(T,, x) =2q(T, ,, X) + x(x+2)"™.
2. Explicitly, for n>3, q([,,X) =2""(X* —=x—=2) +(x+2)".

Proof. (1) Refer to Figure 10. By applying the toggling process on I',, with respect to the edge u,v,, we
decompose I, into two smaller graphs I', —V, and Fnulvl —U,. The graph Fnulvl is the resulting graph by

adding two edges U,V, and U,U, to T,.Thegraph [, % —u, =T, , isshown below.

[scale=0.75] at(1,1.35) v,; at(3,1.4) Vv,; at(1.6,-0.28) u,; at(4,-0.35) Uy; at(5.5,-1.85) U,;

(4,0)(4.3,0): (6.7,0)~(7,0); [fill] (2,0) circle [radius=0.075]; [fill] (9,-2) circle [radius=0.075]; [fill] (2,-2) circle
[radius=0.075]; (5.5,-1.5)~(9,-2); (5.5,-1.5)-(2,-2); (2,0)~(5.5,-1.5); (2,-2)-(2,0): [fill] (5.5,-1.5) circle
[radius=0.075]; at(2,-2.4) V,; at(9,-2.4) V,,; at(10,1.35) V. ,; at(81.35) V, ,; at(11.7,-0.1) U__,;

[fill] (1,1) circle [radius=0.075]; at (55-75) C.,; (20)-(40); (2.0-(11); [fill] (4,0) circle

[radius=0.075]; (4,0)—(3,1); [fill] (3,1) circle [radius=0.075]; (2,0)-(3,1); (3,0)—(4,0); at(5,0) ---; at(6,0)
-« [fill] (7,0) circle [radius=0.075]; (7,0)—(9,0); [fill] (9,0) circle [radius=0.075]; (9,0)-(10,1); (7,0)—(8,1);
(9,0-(11,0);  [fill] (8,1) circle [radius=0.075];  [fill] (10,1) circle [radius=0.075];  (9,0)—(8,1);
(11,0)—(5.5,-1.5); (11,0)-(9,-2); (11,0)—(10,1); [fill] (11,0) circle [radius=0.075];

Un-3 Un-2

Figure 11: The Graph T 1% —u, .
From the above decomposition, we have
U,V.
q(rn! X) = q(rn — Vi X) + q(l—‘n1 ' — Uy, X)'
Furthermore, we toggle the graph I', —V, at the edge U,V, . Obviously, (I', —V,)—U, = A, ,. The graph

r,-v) "2 —V, =T, , inthe following way shown in the figure below (note the position change of U,.) It

gives q(rn =V, X) = Q(An_z ) X) + q(rn—l’ X) :

[scale=0.75] [fill] (0,0) circle [radius=0.075]; at(1,1.35) U,; at(3,1.4) V;; at(2,-0.3) U;; at(-0.35,

0) u,; at (4, -0.35) u,; at (55, -1.85) U,; (0,0-(2,0); (4,0)-(4.3,0); (6.7,0)—(7,0); [fill] (2,0) circle
[radius=0.075]; [fill] (9,-2) circle [radius=0.075]; [fill] (2,-2) circle [radius=0.075]; (0,0)—(1,2);
(5.5,-1.5-(9,-2); (5.5,-1.5)-(2,-2); (0,0)-(5.5,-1.5); (2,-2)-(0,0); [fill] (5.5,-1.5) circle [radius=0.075]; at
(2-24) v,; at(9,-24) V,,; at (10,1.35) Vv,_,; at (8,1.35) V,_4; at (11.7,-0.1) U, _,; [fill] (1,1) circle
[radius=0.075]; at (5.5,-.75) C,,; (2,0)-(4,0); (2,0)—(1,1); [fill] (4,0) circle [radius=0.075]; (4,0)—(3,1);
[fill] (3,1) circle [radius=0.075]; (2,0)-(3,1); (3,0)-(4,0); at (5,0) ---; at (6,0) ---; [fill] (7,0) circle
[radius=0.075]; (7,0)—(9,0); [fill] (9,0) circle [radius=0.075]; (9,0)—(10,1); (7,0)—(8,1); (9,0)—(11,0); ([fill]
(8,1) circle [radius=0.075]; [fill] (10,1) circle [radius=0.075]; (9,0)-(8,1); (11,0)-(5.5,-1.5); (11,0)—(9,-2);
(11,0)—(10,1); [fill] (11,0) circle [radius=0.075];
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Un-1
Figure 12: The Graph (I, —V,) 22 —v, =T, , .

Next, we consider Fnulvl —U, (see Figure 11) and perform the toggling process on it at the edge VU, .

Removing Vv, , it results in I, , again, that i, (1"ulvl—u1)—vlzl"n_1 . The pivot

n
\V,U \V,U
(Fnulvl - ul)1 =0 —u,. One can easily check that (F 1 ul)1 2_u,=KW,_, . Thus

q(C," —uy, X) = (T, X) + Xa(W, ).

Combining all the above together and applying Theorem 2.5, we obtain
q(I, x) = 2q(I5, 4, X) +G(A, 5, X) + Xq(W, 5, X)
=2q(T,_;, X) + 2X(X+2)" 2 + x*(x+2)"?
=2q(T,_,, X) + X(x+2)" ™.

(2 For n=3, 2°(x*=x—2)+(x+2)> =x>+10x* +8x , which matches the formula for
q(I5,X) given in Example 2.1. By mathematical induction, assume
q(r, ,,X) = 2" 2(X* = x=2) +(x+2)" ™.
Then by (1) and the induction hypothesis,
q(T,,x) =2q(T, ,, X) + X(x+2)"*
= 2(2"2(x2 X —2) + (X+2)" )+ x(x+2)"*
=2" (X2 = x=2) +2(x+2)" T+ x(x+ 2"
=2" (X2 =x=2) +(x+2)".
Therefore, the explicit formula for q(T’,, X) is proved.

Immediately from Theorem 3.2, we see that the polynomial ¢(I",, X) is of degree N and the leading

coefficient is 1 for all n > 3. We are interested in finding other patterns and properties of the coefficients of the
interlace polynomial of I',. Below we list q(Fn,X) for small values of N ranging from 3 to 8. These
polynomials can be obtained by Theorem 3.2.

Example 3.3 The interlace polynomials for I',, with 3<n <8, are as follows:
1. q(I5,%x) = x> +10x* +8X ;
2. q(T,,x) = x*+8x>+32x° + 24x;;
3. (I, X) = x° +10x* +40x> + 96 X* + 64 X;
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4. q(Ty, x) = x°+12x° +60x* +160x* +272x* +160X;
5. q(I%,,X) = X" +14x° +84x° +280x* +560x° + 736 X* + 384X .
6. q([, X) = x® +16x" +112x° +448x° +1120 x* +1792 x* +1920 x* + 796 .

A quick observation reveals that the second leading and the last coefficients of ¢(I,, X) seem to follow

interesting patterns. Also, for each N, the coefficients show a “one mode" pattern. In the next section, we give
some properties of the coefficients and special values of the polynomial.

4 Properties of q(T,, X)

The interlace polynomial of a graph is a special graph invariant that can provide valuable different
information about the graph. We are specifically interested in the coefficients and some special values of

q(l“n , X) . Theorem 1.3 shows some examples that the coefficients and degree of an interlace polynomial reflect
properties of the ground graph such as the connectivity, independence number, and the size of a maximum
matching. It is also know that the value of the interlace polynomial (G, X) of agraph G at X = -1 can

help in calculating the rank of a matrix related to the adjacency matrix of G modulo 2. In this section, we
analyze some special values of the interlace polynomial q(l“n ,X) and identify patterns for the coefficients.

4.1 Coefficients of ¢(I,, X)

From the explicit formulas given in Theorem 3.2, we can determine the coefficients of q(T,, X) .
Similarly, those of q(A,,X), q(A,,X) and q(W,,X) can be obtained. First we focus on q(T’,, X) . Recall
from Lemma 2.1 that ¢|(T, X) = x> +10x° +8X .

Definition 4.1 We define @, , to be the coefficient of the x* -term in the polynomial q(l"n ,X) (k>1). That
is,

q(r,, x) =Y a, X, n>3.
k=1

Combining this definition and Theorem 3.2(2), we immediately derive the following

Theorem 4.2 Consider the polynomial ¢(I,, X), where n>3.
1. The degree of ¢(I',,X) is N and the leading coefficientis a,, =1.
2. The second leading coefficientis a, , =2n.
3. The coefficients for the X -term and the X”-term are a,; =2"*(n-1) and

a,, = 2"3(N* —=n+4) respectively.
n-k n
4. If 2<k <n-1,then a, =2 (k]

Proof. The above result is true for N =3 by Example 3.3. For N >4, by Theorem 1.3, the constant
term of the interlace polynomial of any connected graph is zero. It is so for (L, X) . Applying the binomial

expansion of (X+2)", we rewrite the explicit formula for (I, X) given in Theorem 3.2(2) as:

n(n
q(T,,x) =2""x? —2“‘1X+Z(kj2”‘k e
k=1
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n(n
= Z(kan‘k X +2"3 (N —n+4)x* + 2" (n-1)x.
k=3

The statements are obvious then.

Example 3.3 lists q(I,,x) for n=3,4,5,6,7, 8. One can easily check that these polynomials confirms

Theorem 4.2.
Another observation from Example 3.3 is that for every n=3,4,56,7, or 8, the sequence of

coefficients (an'k)E:1 are one mode with the maximal value (peak) being @, ,, the coefficient of the X2 -term.

Is it true for every n > 8 ? We claim that

. n-1 N
Proposition4.3 Let N>3 and I, = LTJ . The sequence (@, ,),-, isone mode:

increasing-maximum-decreasing. Precisely,
1. For 3<n <8, the maximal value occursat kK = 2, thatis, a,, <a,, = Max and

a,,>a,,>...>4a,,.

n-1
2. For n>9 and n=0 or 1(mod3), the maximal value occursat K =r, = LT ;

a,; <8, <...<a, =max>a >a .

n,rn+1

3. If n>9 and n=2(mod3), then the maximal value occurs atboth kK =1, and k =1, +1

. That is,
an,l < an,2 <...< an,rn = max = an,rn+1 > an,rn+1 TS an,n'
Proof.
1. Itisobvious by Lemma 3.3.
_ n-1,_n-2
2. Refer to Equation ??. Assume N>9 and k=0 or 1(mod3). Then r, = LTJ > 3 If

rr<k<n-1,then 3k—n+2>0 andso

a. —a, . =2k n _on-(ksD) n :n!-2"7k’l(3k—n+2)>0
n,k n,k+1 k k+1 kl(n_k)l

n-2

Similarly, if 2<k< = 8, —8,,1 <0 . From Theorem 4.2, a,, ,=2n>a =1 and

n,
a,; =2""(n-1)<2"*(n*-n+4)=a,,.For n=9, r, =2 and the peak value is a,, = 4864 . For

n>9, r >3. We have ,,<a,, and a,;<3,,<...<q,, >a

n

.>a,,,=2n>a, =1

n,rn+l

It remains to show that a,, <a,; for n>9.

n
a,,—a,, = 2”‘3(3J—2”‘3(n2 —n+4)

n-3 n-3

= 26 (nz(n—9)+8(n—3))22?(48) =2">0.

Now we have shown that
a,,<a,,<...<a

n,rn = max > a‘n,rn+1 ot > an,n—l > an,n'
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3. The proof of this part is similar as (2). When n=2(mod3),say, N =3m+2,where m isa

positive integer. Then 3m—n+2=0 implies &, = a, ..., The other inequalities are true as those in (2).

So in this case the maximal value occursat K=m=r, and K=m+1=r, +1.

4.2 Special Values of q(I",, X)

Research has shown that certain values of the interlace polynomial of a graph can provide useful
information about the graph. Since all the coefficients are non-negative integers, the polynomial evaluated at any

integer is also an integer. The following existing result describes the values of (G, X) at x =1,-1, and 2.

Theorem 4.4 [1,7] Let G beagraphwith n vertices.

1. g(G,1) is the number of induced subgraphs of G with an odd number of perfect matchings
(including the empty set).

2. 9(G,2)=2".

3. Let A bethe (nxn)adjacency matrix of G ,and I be the rank of the matrix A+ | modulo 2,
where | isthe nxn identity matrix. Then q(G,-1) =(-1)"-2"" = (-1)"(-2)"".

By Theorem 3.2, q(I",,2) = (2+2)" =2°" and 2n is the number of vertices of (T, ,X), which

confirms Theorem 4.4(2). We evaluate ((I",,1) and q(I,,—1) and then correlate the meaning to these
results.

Proposition 4.5 For any positive integer N >3,
1. The number of induced subgraphs of I', with an odd number of perfect matchings is 3"-2"

2. q(,,-1) =1.
3. Foranyinteger X, q(I",, X) hasthe same parity as that of X. Thatis, q(I",,X) isevenif X is
evenand q(I",,X) isoddif X isodd.

Proof. By Theorem 3.2, q(I,,X) = 2" (X* —x—2) +(x+2)". It gives q(T",,1) =3" 2" and
q(Fn,—l) =1. By Theorem 4.4, the number of induced subgraphs of I', with an odd number of perfect
matchings is 3" —2". Also, for n>3, 2" (x* —x—2) is even. So, the parity of q(T",,X) is depending
on that of (X+2)", and furthermore on the parity of X.

5 An Application in Matrix Theory
In this section, we use the interlace polynomial of a graph to calculate the rank of a related matrix modulo

2 as an application in linear algebra. In reference to Figure 10, we construct the adjacency matrix of I", based on

this order of the vertices: V;,U,,V,,Us,...,V, 4,U,,V,,U,. Letus firstlook at the situation when n=5.

Example 5.1 Let A, be the adjacency matrix of the graph I'; and B,, = A, +1,,, where 1, is the
10x10 identity matrix. The 10x10 matrix B, is given below:
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110000000 1]
1111000001
011 10000O0O00
0111110000
B, = Ayt = 000111000 0.
PP l0001111100
000O0O0O11100
000O0O0O11111
0 00O0O0OO0OO0ODI1IT11
110000011 1]
By calculating the determinant of B,, modulo 2, we obtain | B,;|[=1#0 in Z,. Thus the rank of

By, is10, thatis, B, is of full rank modulo 2.
Next we examine the structure of B, = A, +1,,, where A, isthe adjacency matrix of the graph I’

and 1, isthe 2nx2n identity matrix, for n > 3.

Lemma5.2 For any positive integer N >3,

0100 O 0 0 1]
10110 0 01
01010 0 0O
0110 1 0 0O
A,=10 001 O 0 0O
0 00 O O
0 00 O
11000 - 1 0,0
and ) _
1100 O 0 01
11110 0 01
01110 0 0O
01111 0 0O
B,,=A,+1=/{0 0 0 1 1 0 0O

o
o
o
o
=
=

L o 12nx2n

The structure of the matrix B, is described as follows. The first two rows and the last two rows are

clearly shown above. Consider any integer k with 3<k <2n—2.If k is odd, the K™ row is given by
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[0 -~ 01110 - O], where the first 1 of the 3 consecutive 1’s occurs at the (K—1)"
column. If K is even, then the k" row is given by [O 0111110 - O],where the

first 1 of the 5 consecutive 1’s occurs at the (K —2)™ column.

Using the interlace polynomial of I', we can easily calculate the rank of B, (modulo 2) without
performing any row or column reductions (the linear algebraic method).

Theorem5.3 Let A, be the adjacency matrix of T, (N> 3). The matrix B,, =1 + A, is of full rank,
that is, rank (B,,) = 2n modulo 2.

Proof. Let I = rank (B,,) modulo 2. By Proposition 4.5(2), q(I’,,—1) =1. Note that the graph T,

has 2n vertices. By Theorem 4.4(3),
D (2" =q(,-1) =1= (2" =1=r=2n

Therefore B,, is of full rank.

Of course the rank of matrix B, can be obtained by traditional linear algebra methods. One approach is

described below. Refer to the structure of B, shown in Lemma 5.2. Perform the following elementary row or
column operations:
1. Forevery m with 1<m<n, the (2m)™ row subtractsthe (2m—1)" row; The first three

1’s are changed to three 0’s. As a result, the last row has only two non-zero entries, both equal to 1, which occur at
the first and second column;

2. Add row 1 to row 2. The entries at the (2,1) and (2,2) positions are changed to 0.
3. Add row 1 to the last row. The new last row now has only one non-zero entry valued 1 at the
(2n,2n) position;

The resulting matrix B,," after the above operations, which dose not change the rank of B, , has the
following form:

o
o

N

- o o, mm
o JN o
Tk
*
* %

where

01
and F,=|1 1|

o O K
=
o O

The matrix B,," is upper triangular and on the main diagonal there are N—2 F,s. Obviously, modulo
2, the rank of F, is 3 and the rank of F, is 2. Thus the rank of B,, is 3+2(n—2)+1=2n. By

comparison, using the interlace polynomial of I', to evaluate this rank is quicker and easier.
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Recall that from Theorem 2.5,
a(A,, X) = 4x(x+2)"*, q(A,,x) =2x(x+2)"*, qW,,x) = x(x+2)"".
These polynomials can help us to find the ranks of some matrices related to the adjacency matrices of the 3
graphs: A, A,,W, . Refer to Figure 2.2 which shows the graph A, with labeled vertices.

Let AAn , AAn , ANn be the adjacency matrix for A, A, W, respectively. Let BAn = AAn +1,04,
BAn = AAn +1,,,,, and BWn = A\Nn +1,,,5. Similarly as the result in Theorem 5.3, we can evaluate the

ranks of B, , B, , and B, modulo 2.
n n n

Theorem5.4 Let I, , I, , and I, betherankof B, , B, , and B, modulo 2 respectively. For any
n n n n n n
n=2,
rh, =2n-1, r, =2n+1, and 1, =2n+3.
n n

n

Proof. The numbers of vertices for B, , B, , and B, are 2n+1, 2n+2, and 2n+3
n n n

respectively. Theorem 2.5 shows that ¢[(A,, X) = 4X(X+2)"™. By Theorem 4.4,

_4=qA, 1) = (<122 M 2=
=2=2n+1- =0 = 2n-1.
Similarly, 1, = 2n+1 and My = 2n+3.
The three square matrices_have the following structures: )
111
111
111
1 0
1 111
BAn =
0
1111
11
L 11 J2n+1
[ F] e o e
B, =| " and B, =\F, B, F :
" e 0 K 1.
where F,=[0 -+ 0 1L(2n+1) and F, =1 0 - O]NZM).Theranksofthesethree matrices

modulo 2 are obtained by using the interlace polynomials shown in the above theorem.
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