
International Journal of Recent Engineering Research and Development (IJRERD)

ISSN: 2455-8761

www.ijrerd.com || Volume 03 – Issue 08 || August 2018 || PP. 63-70

63 | P a g e www.ijrerd.com

Development of an Interactive Karnaugh Mapping Tool for

Improving Digital Logic Education

Marcus Lloyde George
1
, Monique Sampson

2

University of the West Indies, Department of Electrical and Computer Engineering

St. Augustine, Trinidad and Tobago

Abstract: Several techniques can be used in Combinational Logic Design. One popular approach involves the

use of Karnaugh Maps which can be used to derive logic equations for a given digital specification. The topic of

Karnaugh Maps is normally introduced to students at the University of the West Indies, St. Augustine via

lectures, however, there may be great merit in the use of technology in teaching topics such as Karnaugh Maps

to students. In engineering education, it is important for students to understand this technique in order to design

optimized digital circuits. This paper presents the development of a PC-based Karnaugh Mapping Tool that can

be used in the teaching of combinational logic design to engineering undergraduates. The ultimate goal of the

tool is to improve student performance at the University of the West Indies, St. Augustine (UWI) by providing

students with a highly interactive tool. In addition, students can use the tool in their study time and learn at rate

which is most suitable for them.

Keywords: Karnaugh maps, Karnaugh Mapping Tools, Digital Electronics, Digital Design, Combinational

Logic, PC-based learning

1. Introduction
The Karnaugh Mapping [13] technique itself is a calculation usually done using pen and paper. It

involves following a set of rules for circling the largest groups of ones possible until all the ones present for that

given Karnaugh Map [13] problem is circled. From the circled group of ones the Sum of Products (SOP) [13]

expression is deduced. This SOP expression describes the newminimized circuitry. The Karnaugh Mapping tool

described in this paper will perform this technique for 2, 3 and 4 variable Karnaugh Maps. It will provide to the

user the following:

● A step by step solution demonstration,
● The final solution,
● Options to view the implicants, prime implicants and essential prime implicants,
● A feature that identifies and solves the Static 1 and Static 0 hazards, and
● A feature that displays the minimum cover.

In order to successfully meet the above listed functions and features, the Quine McCluskey (QM) [9],

[10] method incorporating Petrick‟s method [11] was selected as the most appropriate algorithm. The

programming language used to implement this algorithm in code was C# (pronounced C-Sharp). This algorithm

described an efficient way of deducing the prime and essential prime implicants. From this algorithm, the

implicants could be deduced, the minimum cover could be identified and the step-by-step and final solution

could be displayed. Thus it is suitable to meet most of the project‟s objectives.

The QM method [9], [10] involves two main steps. The first is developing a table to find all the prime

implicants via a series of comparisons and second, using the prime implicants found to develop another table to

deduce the essential prime implicants. Petrick‟s method is incorporated at this stage to systematically deduce the

essential prime implicants from this table [11].

A separate algorithm was developed to identify the Static 1 and Static 0 hazards [12]. This is discussed

in further detail in the section titled “Implementation of the Static Hazards Feature.”

This paper discusses an overview of the Karnaugh Mapping tool, followed by a discussion on how the

first step of the QM algorithm was implemented to deduce the prime implicants, how the second step of the QM

algorithm (Petrick‟s Method) was implemented to deduce the essential prime implicants, how the Static 1 and

Static 0 Hazard features were implemented, then it is discussed how the complete Karnaugh Map Tool was

tested by students and their feedback, and lastly, the suggestions for future work to be done.

International Journal of Recent Engineering Research and Development (IJRERD)

ISSN: 2455-8761

www.ijrerd.com || Volume 03 – Issue 08 || August 2018 || PP. 63-70

64 | P a g e www.ijrerd.com

2. Overview of the Karnaugh Mapping Tool
The Karnaugh Mapping Tool‟s main purpose is that it can be used in the teaching of the topic of

Karnaugh Maps to students. Thus, the tool‟s graphical user interfaces were designed to be simplistic, allowing

for easy navigation. The homepage of the tool is shown in Figure 1 below. From here the student can easily

navigate to the „Start a Karnaugh Map Calculation‟ page (See Figure 2), the „About Karnaugh Maps‟ page or the

„Program Guide‟ page.The „About Karnaugh Maps‟ page details fundamental information on the topic of

Karnaugh Mapping and the „Program Guide‟ pages has guidelines on how to use the Karnaugh Mapping tool.

Figure 1: Karnaugh Map Tool Homepage

Figure 2: Start a Karnaugh Map Calculation Page

If the user clicks ‘Start a Karnaugh Map’ calculation, as seen in Figure 2 above, the user is presented

with the option to begin either a 2, 3 or 4 variable Karnaugh Map Calculation. Since each of the pages and the

code for the 2, 3 and 4 variable calculations are set up similarly, this paper will only go in-depth in discussing

that of the 3 variable Karnaugh Map.

Figure 3 below shows the screen that appears if the user clicks the „Three Variable Karnaugh Map‟

button. On this page the user can enter data on the Karnaugh Map in one of two ways. Either by clicking the

cells on the Karnaugh Map or the various outputs on the truth table. The values change between “1”, “0” and

“X” for don‟t care conditions.

International Journal of Recent Engineering Research and Development (IJRERD)

ISSN: 2455-8761

www.ijrerd.com || Volume 03 – Issue 08 || August 2018 || PP. 63-70

65 | P a g e www.ijrerd.com

Figure 3: Three Variable Karnaugh Map Calculation Page

When the user has completed entering the values on the Karnaugh Map, they can then select which

result they wish to view. For example, if the user wishes to view the prime implicants present, the can click the

‘View Prime Implicants’ button beneath the Karnaugh Map and so on. Figure 4 shows the screen the user would

see if they were to click ‘View Prime Implicants’.

Figure 4:Three Variable Prime Implicants Page

Similar screens are displayed for the other results (Step by Step Solution, Minimum Cover etcetera) the

distinction being that the results shown on the Karnaugh Map itself would vary to suit the button clicked by the

user.

3. Implementation of First Stage of QM Method (Determining Prime Implicants)
To determine the prime implicants using the QM method, a table is constructed based on the minterms

and don‟t care terms present in the Karnaugh Map (e.g. In Figure 3 the minterms present were 0, 1, 7 and the

don‟t care term present was 5). These terms are converted to their corresponding binary form and sorted in a

table based on the number of ones present in each binary term (e.g. the terms in Group 0 have no ones present,

terms in Group 1 have a single one present and so on). Table 1 below shows how these terms were sorted.

Table 1: Prime Implicants Table

Group List 1 List 2 List 3

0 000 00-

-01

1-1

1 001

2 101

3 111

International Journal of Recent Engineering Research and Development (IJRERD)

ISSN: 2455-8761

www.ijrerd.com || Volume 03 – Issue 08 || August 2018 || PP. 63-70

66 | P a g e www.ijrerd.com

To implement this in C# code, switch cases were used. The condition of the switch-case being the user

input. For example, if the user entered a „1‟ at position zero in the Karnaugh Map, 000 would be stored in group

0. Similarly, if the user entered a „X‟ at position zero in the Karnaugh Map, 000 would be stored in group 0.

However if the user entered „0‟ at position zero in the Karnaugh Map, nothing would be stored in any of the

groups as „0‟ indicates that neither a don‟t care (X) nor minterm is present. This was repeated in code for all the

different positions in the Karnaugh Map, the result being that all the minterms and don‟t cares entered by the

user were correctly sorted.

After sorting, the next step is to compare all consecutive groups. That is, all Group 0 terms are

compared with all Group 1 terms, all Group 1 terms are compared with all Group 2 terms and so on. Using

Table 1 as reference, under List 2, we see the term 00-. This indicates that terms 000 and 001 were successfully

compared. The rule being that, if two terms differ by only one value they can be combined and the differing

value replaced with a dash. In terms of the Karnaugh Map, this is saying that a prime implicant can be formed

by circling the terms at the zero and one positions. From figure 4, the ones circled in blue represent this. This

step is repeated for all the terms present in the table until no further comparison is possible. All list 2 terms also

have to be compared with each other, however in this example, no further comparisons are possible hence List 3

remains empty.

In code this was implemented by checking which miterms and don‟t care terms were present, in which

groups they were stored to deduce whether or not they could be successfully combined to form a prime

implicant. Figure 5 below shows a code snippet example.

Figure 5: Determining the Prime Implicants Code

It is essentially saying that if „1‟s are present at position zero (variable named Group0List1Unique in

the code)and position one (variable named Group1List1AUnique) on the Karnaugh Map then the terms can

successfully be combined to form a prime implicant.

Similar code was repeated for all other possible comparisons that could be present in the table based on the user

input. This ensures that any combination of inputs entered by the user could be compared in the code, thus

successfully determining the Prime Implicants present in the Karnaugh Map. Both the „View Prime Implicants‟

„View All Implicants‟ pages uses the data obtained at this stage to display the respective form of the result to the

user.

4. Implementation of Second Stage of QM Method

(Petrick’s Method – Determining Essential Prime Implicants)
Determining the prime implicants alone however, is not sufficient to deduce the final sum of products

(SOP) expression. For this to be calculated, the program then has to determine which are the essential prime

implicants, that is, the prime implicants that cover minterms that are not covered by any other prime implicant.

In the example given in Figure 4 the blue and black circled prime implicants are essential prime implicants as

they cover positions zero and seven respectively which are not covered by any other prime implicant. Whereas

the green is not an essential prime implicants, as it covers positions one and five which are both already covered

by other prime implicants.

International Journal of Recent Engineering Research and Development (IJRERD)

ISSN: 2455-8761

www.ijrerd.com || Volume 03 – Issue 08 || August 2018 || PP. 63-70

67 | P a g e www.ijrerd.com

The QM method states that to determine the essential prime implicants, a table has to be created using

the prime implicants. This table then has to be analyzed to determine which of the prime implicants present are

essential. The essential prime implicant table corresponding to the example given in Figure 4 is shown in Table

2 below. The prime implicants are listed as columns and the minterms as the rows. It should be noted that the

don‟t cares are omitted from this table.

Table 2: Essential Prime Implicants Table

 A’B’ B’C AC

0 X

1 X X

7 X

To determine which the essential prime implicants are, we look for the minterm rows with only one „X‟

present. In this case, rows 1 and 3. To do this in code, we first have to deduce which prime implicants are

contained in the prime implicants list – a list created in the code to store the prime implicants found in the

previous step of the QM method described in Section III. When the prime implicants present are deduced, the

binary form of each needs to be stored in a new list called PrimeImplicantsBrinary. For the example discussed

in this paper, the binary form of the prime implicant A‟B‟ would be stored as 00- in the PrimeImplicantsBinary

list. Following this step, the dash present needs replaced with both a 0 and a 1 giving 001 and 000 now stored in

new independent variables.Each of these new variables would then be compared to the binary form of all the

minterms present. Whenever there is a match with a minterm when compared an „X‟ would be stored in that

corresponding minterms list. These steps are imitating the function of the table. When this is completed for all

the prime implicants, depending on which miterms list only has one „X‟ present, we can determine which the

essential prime implicants are.

After the essential prime implicants are deduced, it needs to be determine whether or not the function is

covered by the essential prime implicants alone or if other prime implicants need to be included to cover the

function. In the case of the example given in Figure 4, the essential prime implicants alone cover the function.

As we can see, if only the blue and black circles are present on the map all the minterms i.e. „1‟s will be

covered. This may not be the case in some instances however and a further step needs to be taken to determine

which additional prime implicants need to be included to cover the function. This is where Petrick‟s method is

applied.

Petrick‟s method involves further analyzing of the table to determine the minimum combination of the

remaining prime implicants are necessary to cover the function. In Petrick‟s method, a Boolean expression P is

formed which describes all possible solutions of the table. The prime implicants are numbered, P1 = A‟B‟, P2 =

B‟C and P3 = AC for example. Using these Pi variables, a larger Boolean expression P can be formed, which

captures the precise conditions for every row in the table to be covered. For example for row two of the essential

prime implicant table (see Table 2) to be covered the expression P1 + P2 would be written. This would be

completed for all the rows of the table forming the larger Boolean expression. For the example given in Figure

4, as we already established, additional prime implicants are not needed to cover this function, thus further

explanation using the current example is not valid. However, the Petrick‟s method would continue to be

explained.

After the final Boolean expression is written it may look something like the following example:

P = (P1 + P2)(P1 + P3)(P2 + P4)(P3 + P5)(P4 + P6)(P5 + P6) = 1 (1)

Using the Boolean algebra rule (X + Y)(X + Z) = X + YZ, as well as the distributive law, the function becomes:

P = (P1 + P2P3)(P4 + P2P6)(P5 + P3P6) (2)

P = (P1P4 + P1P2P6 + P2P3P4 + P2P3P6)(P5 + P3P6) (3)

P = P1P4P5 + P1P2P5P6 + P2P3P4P5 + P2P3P5P6 + P1P3P4P6 + P1P2P3P6 + P2P3P4P6 + P2P3P6 (4)

The rule X + XY = X is then applied to remove redundant terms from the logic function producing:

P = P1P4P5 + P1P2P5P6 + P2P3P4P5 + P1P3P4P6 + P2P3P6 (5)

From this we extract the solution for which the minimum number of prime implicants are used. In the

above expression we can either select P1, P4 and P5 or P2, P3 and P6. These in conjunction with the essential

prime implicants found will comprise the final sum of product result.

International Journal of Recent Engineering Research and Development (IJRERD)

ISSN: 2455-8761

www.ijrerd.com || Volume 03 – Issue 08 || August 2018 || PP. 63-70

68 | P a g e www.ijrerd.com

To implement this in code, first, the essential prime implicants were removed from the table and any

other minterms they covered. This reduces the table and leaves just the remaining prime implicants that can

possibly form the minimum SOP expression. After the table is reduced, the remaining prime implicants in the

table needed to be numbered P1, P2, P3 etcetera. For each row, the corresponding expression had to be stored and

then these expressions were all combined to form the larger Boolean expression. The program then needed to

apply the Boolean algebra rule and the distributive law followed by the X + XY = X rule to calculate the final

expanded expression. The program then extracted the solution from the final expanded expression with the least

amount of prime implicants present and added these prime implicants to the final SOP. If there are more than

one solution with the same number of prime implicants the program will provide all the possible results to the

user.

After the additional prime implicants needed to cover the function were determined(if any that is), the

final SOP expression was written. The final SOP for the example we have been following thus far, is:

F = A‟B‟ + AC (6)

The final SOP is displayed in a text box at the bottom of the „View Essential Prime Implicants‟ page.

The „Final Solution‟, „Minimum Cover‟ and Step by Step Solution‟ pages also use the data obtained at the end

of this stage to present the respective form of the result to the user.

5. Implementation of the First Stage of Static Hazard Feature
A static hazard occurs when a single input variable change should cause no change in the output of a

combinational logic circuit, but a short glitch of the incorrect logic level occurs. The problem occurs because

real physical implementations of logic functions have finite propagation times which are variable, and if two

inputs to a gate should theoretically change simultaneously, one will actually change before the other. There are

two types of static hazards:

● Static-1 Hazard: the output is currently 1 and after the inputs change, the output momentarily changes to

0 before settling on 1
● Static-0 Hazard: the output is currently 0 and after the inputs change, the output momentarily changes to

1 before settling on 0

In properly formed two-level AND-OR logic, a Sum Of Products expression will have no static-0

hazards. Conversely, there will be no static-1 hazards in an OR-AND implementation of a Product Of Sums

expression.

A static 1 hazard may occur in a two level sum of products (SOP) implementation.A static one hazard

can be detected by observing if any two logically adjacent cells with a '1' output are not covered by a common

product or implicant, a static hazard can occur when a single input change moves from one cell to the other.

Figure 6: Static 1 Hazard Example

International Journal of Recent Engineering Research and Development (IJRERD)

ISSN: 2455-8761

www.ijrerd.com || Volume 03 – Issue 08 || August 2018 || PP. 63-70

69 | P a g e www.ijrerd.com

In Figure 6, if the green circled prime implicants is omitted, a Static 1 Hazard can occur. A static 1

hazard can be prevented by adding a product terms so that all pairs of logically adjacent cells with a '1' output

have at least one common product covering them. This can be accomplished by using all prime implicants in the

SOP form rather than using a minimized SOP form, i.e. leaving the green circled prime implicant expression in

the final SOP. This was relatively simple to implement in code. All the possible instances where a Static 1

Hazard could be present in the Karnaugh Map were coded and if a Static 1 Hazzard was indeed present, the

group of ones causing the Hazard would be circled in red and their expression would be included in the final

SOP to eliminate the hazard.

A static 0 hazard may occur in a two level product of sums (POS) implementation. A static zero hazard

can be detected by observing if any two logically adjacent cells with a '0' output are not covered by a common

sum. A static hazard can occur when a single input change moves from one cell to the other.

A static 0 hazard can be prevented by adding sum terms so that all pairs of logically adjacent cells with

a '0' output have at least one common sum covering them.

A static 0 hazard follows the same basic concept as the static 1 hazard and thus the code implementation is

similar.

6. Testing of the Karnaugh Mapping Tool
Upon completion of the implementation of the tool, a group of thirty-four (34) students currently

pursuing the degree of Electrical and Computer engineering were given the program to test. A questionnaire was

be distributed to gain their feedback on the tool. The most prominent outcome of this survey was that when

students were asked whether or not the found the Karnaugh Map Tool to be helpful 100% of the responses said

yes. In an open ended follow up question students stated that they were able to verify their answers on Karnaugh

Map problems they practiced themselves.

7. Conclusions
The purpose of this Karnaugh Map tool is to improve student performance. From the result of the

survey carried out, it was found the 100% of the students that tested the Karnaugh Map Tool found it helpful

when studying the topic of Karnaugh Mapping.

Based on the survey carried out and comparison made with existing Karnaugh Map Tools, the

following are a list of the suggestions for future work that can be done to improve the Karnaugh Map Tool

created:-

- Develop the tool to be capable of solving for more variable Karnaugh Map calculations (at least up to 8),
- Develop the tool to provide the Product of Sums (POS) expression,
- Develop the tool to generate random examples,
- Develop the tool to display a drawing of the final digital circuit to the user, and
- Develop the tool to include video tutorials and/or access to lecture notes in the “About Karnaugh Map”

feature.

References
[1] Yizhu Zhao and Yunfeng He. 2012. Some Key Issues of Teaching Reform about Digital Logic. 2012

IEEE Asia-Pacific Services Computing Conference (APSCC), pp. 406 – 409.

[2] Wang Yuan and Liang Zhi-yong. 2012. The application of LabVIEW in the digital logic experiment.

2012 IEEE Symposium on Robotics and Applications (ISRA), pp. 125 - 128, DOI:

10.1109/ISRA.2012.6219137

[3] Arjuna Madanayake, Chamith Wijenayake, Rimesh M. Joshi, Jim Grover, Joan Carletta, Jay Adams;,

Tom Hartley and Tokunbo Ogunfunmi. 2012. Teaching freshmen VHDL-based digital design. 2012

IEEE International Symposium on Circuits and Systems, pp. 2701 – 2704.

[4] Pornpimon Chayratsami. 2013. Supplementary laboratory in digital circuit and logic design course for

pre-service vocational teacher in Thailand. 2013 IEEE Global Engineering Education Conference

(EDUCON), pp. 612 – 617.

[5] A. Alasdoon, P. Prasad, A. Beg and A. Chan, "A Recent Survey of Circuit Design Tools for

Teaching", Proceedings of the World Congress on Engineering and Computer Science, vol., 2013

[Online]. Available: http://www.iaeng.org/publication/WCECS2013/WCECS2013_pp182-186.pdf.

[Accessed: 01- Apr- 2017]

[6] P. W. C. Prasad, Abeer Alsadoon, Azam Beg and Anthony Chan. 2014. Incorporating simulation tools

in the teaching of digital logic design. 2014 IEEE International Conference on Control System,

Computing and Engineering (ICCSCE), pp. 18 – 22.

http://www.iaeng.org/publication/WCECS2013/WCECS2013_pp182-186.pdf

International Journal of Recent Engineering Research and Development (IJRERD)

ISSN: 2455-8761

www.ijrerd.com || Volume 03 – Issue 08 || August 2018 || PP. 63-70

70 | P a g e www.ijrerd.com

[7] Zhong Bocheng;, Zizhuo Yang, Yihan Wang and Runcai Huang. 2014. Exploration and practice in

teaching of digital logic course. 2014 9th International Conference on Computer Science & Education

(ICCSE), pp. 799 – 802.

[8] George, Marcusand Geetam Singh Tomar. 2015. Hardware Design Procedure: Principles and Practices.

2015 Fifth International Conference on Communication Systems and Network Technologies. pp. 834 –

838

[9] M. Osama, "Karnaugh Map Minimizer (Three Variables) - CodeProject", Codeproject.com, 2017.

[Online]. Available: http://www.codeproject.com/Articles/37031/Karnaugh-Map-Minimizer-Three-

Variables. [Accessed: 01- Apr- 2017]

[10] P. Nowick, "The Quine-McCluskey Method", pp. 1-15, 2016 [Online]. Available:

http://www.cs.columbia.edu/~cs6861/handouts/quine-mccluskey-handout.pdf. [Accessed: 01- Apr-

2017]

[11] T. ARTICLES, I. ARTICLES, G. ELECTRONICS, C. PROJECTS, E. MICRO, M. SCIENCE, V.

Lectures, I. Webinars, C. Library, C. Us and D. Krambeck, "Prime Implicant Simplification Using

Petrick‟s Method", Allaboutcircuits.com, 2017. [Online]. Available:

http://www.allaboutcircuits.com/technical-articles/prime-implicant-simplification-using-petricks-

method/ . [Accessed: 01- Apr- 2017]

[12] "Static Hazards", Ee.scu.edu, 2017. [Online]. Available:

http://www.ee.scu.edu/classes/2000fall/elen021/supp/stathaz.html. [Accessed: 01- Apr- 2017]

[13] "Digital Logic - Karnaugh Maps", Facstaff.bucknell.edu, 2017. [Online]. Available:

https://www.facstaff.bucknell.edu/mastascu/eLessonsHTML/Logic/Logic3.html. [Accessed: 01- Apr-

2017]

Author Profile
Marcus Lloyde George received the Bsc degree in Electrical and Computer

Engineering from the University of the West Indies, St. Augustine in 2007 and his MPhil

degree in Electrical and Computer Engineering from the University of the West Indies, St.

Augustine in 2011. Marcus is currently in the examination stage of his PhD degree in

Electrical and Computer Engineering from the University of the West Indies, St. Augustine.

Marcus is Chairman, Chief Executive Officer and Founder of the Ultimate Virtual

Market Limited Group of Companies which include a range of online-based service-providing

companies in the areas of Agriculture, Automotive and Education. He is also the author of

several books in the area of Life Foundations and is the author of upcoming books “Expert Mathematics:

Strategies and Solutions” and “Digital Electronic Systems – Principles and Practices”.

His research engineering interest include the business administration, strategic planning and

management, engineering education, formal specification, modelling and verification, field programmable

architectures, embedded systems design, intelligent electronic instrumentation, CADs for field programmable

architectures, biomedical engineering, network on chip architectures, reconfigurable computing, and

information and communication technology (ICT).

Monique Sampson received the Bsc degree in Electrical and Computer Engineering from the University of the

West Indies, St. Augustine in 2017 and was a former research student of Marcus Lloyde George.

http://www.codeproject.com/Articles/37031/Karnaugh-Map-Minimizer-Three-Variables
http://www.codeproject.com/Articles/37031/Karnaugh-Map-Minimizer-Three-Variables
http://www.cs.columbia.edu/~cs6861/handouts/quine-mccluskey-handout.pdf
http://www.allaboutcircuits.com/technical-articles/prime-implicant-simplification-using-petricks-method/
http://www.allaboutcircuits.com/technical-articles/prime-implicant-simplification-using-petricks-method/
https://www.facstaff.bucknell.edu/mastascu/eLessonsHTML/Logic/Logic3.html

